This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hilbert lattice contraposition law. (Contributed by NM, 21-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chsscon1 | |- ( ( A e. CH /\ B e. CH ) -> ( ( _|_ ` A ) C_ B <-> ( _|_ ` B ) C_ A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | choccl | |- ( A e. CH -> ( _|_ ` A ) e. CH ) |
|
| 2 | chsscon3 | |- ( ( ( _|_ ` A ) e. CH /\ B e. CH ) -> ( ( _|_ ` A ) C_ B <-> ( _|_ ` B ) C_ ( _|_ ` ( _|_ ` A ) ) ) ) |
|
| 3 | 1 2 | sylan | |- ( ( A e. CH /\ B e. CH ) -> ( ( _|_ ` A ) C_ B <-> ( _|_ ` B ) C_ ( _|_ ` ( _|_ ` A ) ) ) ) |
| 4 | ococ | |- ( A e. CH -> ( _|_ ` ( _|_ ` A ) ) = A ) |
|
| 5 | 4 | adantr | |- ( ( A e. CH /\ B e. CH ) -> ( _|_ ` ( _|_ ` A ) ) = A ) |
| 6 | 5 | sseq2d | |- ( ( A e. CH /\ B e. CH ) -> ( ( _|_ ` B ) C_ ( _|_ ` ( _|_ ` A ) ) <-> ( _|_ ` B ) C_ A ) ) |
| 7 | 3 6 | bitrd | |- ( ( A e. CH /\ B e. CH ) -> ( ( _|_ ` A ) C_ B <-> ( _|_ ` B ) C_ A ) ) |