This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A consequence of relative atomicity. (Contributed by NM, 1-Jul-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chrelat2 | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ¬ 𝐴 ⊆ 𝐵 ↔ ∃ 𝑥 ∈ HAtoms ( 𝑥 ⊆ 𝐴 ∧ ¬ 𝑥 ⊆ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) → ( 𝐴 ⊆ 𝐵 ↔ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ⊆ 𝐵 ) ) | |
| 2 | 1 | notbid | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) → ( ¬ 𝐴 ⊆ 𝐵 ↔ ¬ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ⊆ 𝐵 ) ) |
| 3 | sseq2 | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) → ( 𝑥 ⊆ 𝐴 ↔ 𝑥 ⊆ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ) ) | |
| 4 | 3 | anbi1d | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) → ( ( 𝑥 ⊆ 𝐴 ∧ ¬ 𝑥 ⊆ 𝐵 ) ↔ ( 𝑥 ⊆ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∧ ¬ 𝑥 ⊆ 𝐵 ) ) ) |
| 5 | 4 | rexbidv | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) → ( ∃ 𝑥 ∈ HAtoms ( 𝑥 ⊆ 𝐴 ∧ ¬ 𝑥 ⊆ 𝐵 ) ↔ ∃ 𝑥 ∈ HAtoms ( 𝑥 ⊆ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∧ ¬ 𝑥 ⊆ 𝐵 ) ) ) |
| 6 | 2 5 | bibi12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) → ( ( ¬ 𝐴 ⊆ 𝐵 ↔ ∃ 𝑥 ∈ HAtoms ( 𝑥 ⊆ 𝐴 ∧ ¬ 𝑥 ⊆ 𝐵 ) ) ↔ ( ¬ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ⊆ 𝐵 ↔ ∃ 𝑥 ∈ HAtoms ( 𝑥 ⊆ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∧ ¬ 𝑥 ⊆ 𝐵 ) ) ) ) |
| 7 | sseq2 | ⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) → ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ⊆ 𝐵 ↔ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ⊆ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ) ) | |
| 8 | 7 | notbid | ⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) → ( ¬ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ⊆ 𝐵 ↔ ¬ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ⊆ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ) ) |
| 9 | sseq2 | ⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) → ( 𝑥 ⊆ 𝐵 ↔ 𝑥 ⊆ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ) ) | |
| 10 | 9 | notbid | ⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) → ( ¬ 𝑥 ⊆ 𝐵 ↔ ¬ 𝑥 ⊆ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ) ) |
| 11 | 10 | anbi2d | ⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) → ( ( 𝑥 ⊆ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∧ ¬ 𝑥 ⊆ 𝐵 ) ↔ ( 𝑥 ⊆ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∧ ¬ 𝑥 ⊆ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ) ) ) |
| 12 | 11 | rexbidv | ⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) → ( ∃ 𝑥 ∈ HAtoms ( 𝑥 ⊆ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∧ ¬ 𝑥 ⊆ 𝐵 ) ↔ ∃ 𝑥 ∈ HAtoms ( 𝑥 ⊆ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∧ ¬ 𝑥 ⊆ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ) ) ) |
| 13 | 8 12 | bibi12d | ⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) → ( ( ¬ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ⊆ 𝐵 ↔ ∃ 𝑥 ∈ HAtoms ( 𝑥 ⊆ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∧ ¬ 𝑥 ⊆ 𝐵 ) ) ↔ ( ¬ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ⊆ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ↔ ∃ 𝑥 ∈ HAtoms ( 𝑥 ⊆ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∧ ¬ 𝑥 ⊆ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ) ) ) ) |
| 14 | ifchhv | ⊢ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∈ Cℋ | |
| 15 | ifchhv | ⊢ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ∈ Cℋ | |
| 16 | 14 15 | chrelat2i | ⊢ ( ¬ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ⊆ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ↔ ∃ 𝑥 ∈ HAtoms ( 𝑥 ⊆ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∧ ¬ 𝑥 ⊆ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ) ) |
| 17 | 6 13 16 | dedth2h | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ¬ 𝐴 ⊆ 𝐵 ↔ ∃ 𝑥 ∈ HAtoms ( 𝑥 ⊆ 𝐴 ∧ ¬ 𝑥 ⊆ 𝐵 ) ) ) |