This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rearrangement of the join of 4 Hilbert lattice elements. (Contributed by NM, 29-Apr-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | chj12.1 | ⊢ 𝐴 ∈ Cℋ | |
| chj12.2 | ⊢ 𝐵 ∈ Cℋ | ||
| chj12.3 | ⊢ 𝐶 ∈ Cℋ | ||
| chj4.4 | ⊢ 𝐷 ∈ Cℋ | ||
| Assertion | chj4i | ⊢ ( ( 𝐴 ∨ℋ 𝐵 ) ∨ℋ ( 𝐶 ∨ℋ 𝐷 ) ) = ( ( 𝐴 ∨ℋ 𝐶 ) ∨ℋ ( 𝐵 ∨ℋ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chj12.1 | ⊢ 𝐴 ∈ Cℋ | |
| 2 | chj12.2 | ⊢ 𝐵 ∈ Cℋ | |
| 3 | chj12.3 | ⊢ 𝐶 ∈ Cℋ | |
| 4 | chj4.4 | ⊢ 𝐷 ∈ Cℋ | |
| 5 | 2 3 4 | chj12i | ⊢ ( 𝐵 ∨ℋ ( 𝐶 ∨ℋ 𝐷 ) ) = ( 𝐶 ∨ℋ ( 𝐵 ∨ℋ 𝐷 ) ) |
| 6 | 5 | oveq2i | ⊢ ( 𝐴 ∨ℋ ( 𝐵 ∨ℋ ( 𝐶 ∨ℋ 𝐷 ) ) ) = ( 𝐴 ∨ℋ ( 𝐶 ∨ℋ ( 𝐵 ∨ℋ 𝐷 ) ) ) |
| 7 | 3 4 | chjcli | ⊢ ( 𝐶 ∨ℋ 𝐷 ) ∈ Cℋ |
| 8 | 1 2 7 | chjassi | ⊢ ( ( 𝐴 ∨ℋ 𝐵 ) ∨ℋ ( 𝐶 ∨ℋ 𝐷 ) ) = ( 𝐴 ∨ℋ ( 𝐵 ∨ℋ ( 𝐶 ∨ℋ 𝐷 ) ) ) |
| 9 | 2 4 | chjcli | ⊢ ( 𝐵 ∨ℋ 𝐷 ) ∈ Cℋ |
| 10 | 1 3 9 | chjassi | ⊢ ( ( 𝐴 ∨ℋ 𝐶 ) ∨ℋ ( 𝐵 ∨ℋ 𝐷 ) ) = ( 𝐴 ∨ℋ ( 𝐶 ∨ℋ ( 𝐵 ∨ℋ 𝐷 ) ) ) |
| 11 | 6 8 10 | 3eqtr4i | ⊢ ( ( 𝐴 ∨ℋ 𝐵 ) ∨ℋ ( 𝐶 ∨ℋ 𝐷 ) ) = ( ( 𝐴 ∨ℋ 𝐶 ) ∨ℋ ( 𝐵 ∨ℋ 𝐷 ) ) |