This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rearrangement of the join of 4 Hilbert lattice elements. (Contributed by NM, 29-Apr-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | chj12.1 | |- A e. CH |
|
| chj12.2 | |- B e. CH |
||
| chj12.3 | |- C e. CH |
||
| chj4.4 | |- D e. CH |
||
| Assertion | chj4i | |- ( ( A vH B ) vH ( C vH D ) ) = ( ( A vH C ) vH ( B vH D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chj12.1 | |- A e. CH |
|
| 2 | chj12.2 | |- B e. CH |
|
| 3 | chj12.3 | |- C e. CH |
|
| 4 | chj4.4 | |- D e. CH |
|
| 5 | 2 3 4 | chj12i | |- ( B vH ( C vH D ) ) = ( C vH ( B vH D ) ) |
| 6 | 5 | oveq2i | |- ( A vH ( B vH ( C vH D ) ) ) = ( A vH ( C vH ( B vH D ) ) ) |
| 7 | 3 4 | chjcli | |- ( C vH D ) e. CH |
| 8 | 1 2 7 | chjassi | |- ( ( A vH B ) vH ( C vH D ) ) = ( A vH ( B vH ( C vH D ) ) ) |
| 9 | 2 4 | chjcli | |- ( B vH D ) e. CH |
| 10 | 1 3 9 | chjassi | |- ( ( A vH C ) vH ( B vH D ) ) = ( A vH ( C vH ( B vH D ) ) ) |
| 11 | 6 8 10 | 3eqtr4i | |- ( ( A vH B ) vH ( C vH D ) ) = ( ( A vH C ) vH ( B vH D ) ) |