This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The expression E. x x = A means " A is a set" even if A contains x as a bound variable. This lemma helps minimizing axiom or df-clab usage in some cases. Extracted from the proof of issetft . (Contributed by Wolf Lammen, 30-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cbvexeqsetf | |- ( F/_ x A -> ( E. x x = A <-> E. y y = A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfnfc1 | |- F/ x F/_ x A |
|
| 2 | nfv | |- F/ y F/_ x A |
|
| 3 | nfvd | |- ( F/_ x A -> F/ y -. x = A ) |
|
| 4 | nfcvd | |- ( F/_ x A -> F/_ x y ) |
|
| 5 | id | |- ( F/_ x A -> F/_ x A ) |
|
| 6 | 4 5 | nfeqd | |- ( F/_ x A -> F/ x y = A ) |
| 7 | 6 | nfnd | |- ( F/_ x A -> F/ x -. y = A ) |
| 8 | eqeq1 | |- ( x = y -> ( x = A <-> y = A ) ) |
|
| 9 | 8 | notbid | |- ( x = y -> ( -. x = A <-> -. y = A ) ) |
| 10 | 9 | a1i | |- ( F/_ x A -> ( x = y -> ( -. x = A <-> -. y = A ) ) ) |
| 11 | 1 2 3 7 10 | cbv2w | |- ( F/_ x A -> ( A. x -. x = A <-> A. y -. y = A ) ) |
| 12 | alnex | |- ( A. x -. x = A <-> -. E. x x = A ) |
|
| 13 | alnex | |- ( A. y -. y = A <-> -. E. y y = A ) |
|
| 14 | 11 12 13 | 3bitr3g | |- ( F/_ x A -> ( -. E. x x = A <-> -. E. y y = A ) ) |
| 15 | 14 | con4bid | |- ( F/_ x A -> ( E. x x = A <-> E. y y = A ) ) |