This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The expression E. x x = A means " A is a set" even if A contains x as a bound variable. This lemma helps minimizing axiom or df-clab usage in some cases. Extracted from the proof of issetft . (Contributed by Wolf Lammen, 30-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cbvexeqsetf |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfnfc1 | ||
| 2 | nfv | ||
| 3 | nfvd | ||
| 4 | nfcvd | ||
| 5 | id | ||
| 6 | 4 5 | nfeqd | |
| 7 | 6 | nfnd | |
| 8 | eqeq1 | ||
| 9 | 8 | notbid | |
| 10 | 9 | a1i | |
| 11 | 1 2 3 7 10 | cbv2w | |
| 12 | alnex | ||
| 13 | alnex | ||
| 14 | 11 12 13 | 3bitr3g | |
| 15 | 14 | con4bid |