This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The last symbol of a concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cats1cld.1 | ⊢ 𝑇 = ( 𝑆 ++ 〈“ 𝑋 ”〉 ) | |
| cats1cli.2 | ⊢ 𝑆 ∈ Word V | ||
| cats1fvn.3 | ⊢ ( ♯ ‘ 𝑆 ) = 𝑀 | ||
| Assertion | cats1fvn | ⊢ ( 𝑋 ∈ 𝑉 → ( 𝑇 ‘ 𝑀 ) = 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cats1cld.1 | ⊢ 𝑇 = ( 𝑆 ++ 〈“ 𝑋 ”〉 ) | |
| 2 | cats1cli.2 | ⊢ 𝑆 ∈ Word V | |
| 3 | cats1fvn.3 | ⊢ ( ♯ ‘ 𝑆 ) = 𝑀 | |
| 4 | 3 | oveq2i | ⊢ ( 0 + ( ♯ ‘ 𝑆 ) ) = ( 0 + 𝑀 ) |
| 5 | lencl | ⊢ ( 𝑆 ∈ Word V → ( ♯ ‘ 𝑆 ) ∈ ℕ0 ) | |
| 6 | 2 5 | ax-mp | ⊢ ( ♯ ‘ 𝑆 ) ∈ ℕ0 |
| 7 | 3 6 | eqeltrri | ⊢ 𝑀 ∈ ℕ0 |
| 8 | 7 | nn0cni | ⊢ 𝑀 ∈ ℂ |
| 9 | 8 | addlidi | ⊢ ( 0 + 𝑀 ) = 𝑀 |
| 10 | 4 9 | eqtr2i | ⊢ 𝑀 = ( 0 + ( ♯ ‘ 𝑆 ) ) |
| 11 | 1 10 | fveq12i | ⊢ ( 𝑇 ‘ 𝑀 ) = ( ( 𝑆 ++ 〈“ 𝑋 ”〉 ) ‘ ( 0 + ( ♯ ‘ 𝑆 ) ) ) |
| 12 | s1cli | ⊢ 〈“ 𝑋 ”〉 ∈ Word V | |
| 13 | s1len | ⊢ ( ♯ ‘ 〈“ 𝑋 ”〉 ) = 1 | |
| 14 | 1nn | ⊢ 1 ∈ ℕ | |
| 15 | 13 14 | eqeltri | ⊢ ( ♯ ‘ 〈“ 𝑋 ”〉 ) ∈ ℕ |
| 16 | lbfzo0 | ⊢ ( 0 ∈ ( 0 ..^ ( ♯ ‘ 〈“ 𝑋 ”〉 ) ) ↔ ( ♯ ‘ 〈“ 𝑋 ”〉 ) ∈ ℕ ) | |
| 17 | 15 16 | mpbir | ⊢ 0 ∈ ( 0 ..^ ( ♯ ‘ 〈“ 𝑋 ”〉 ) ) |
| 18 | ccatval3 | ⊢ ( ( 𝑆 ∈ Word V ∧ 〈“ 𝑋 ”〉 ∈ Word V ∧ 0 ∈ ( 0 ..^ ( ♯ ‘ 〈“ 𝑋 ”〉 ) ) ) → ( ( 𝑆 ++ 〈“ 𝑋 ”〉 ) ‘ ( 0 + ( ♯ ‘ 𝑆 ) ) ) = ( 〈“ 𝑋 ”〉 ‘ 0 ) ) | |
| 19 | 2 12 17 18 | mp3an | ⊢ ( ( 𝑆 ++ 〈“ 𝑋 ”〉 ) ‘ ( 0 + ( ♯ ‘ 𝑆 ) ) ) = ( 〈“ 𝑋 ”〉 ‘ 0 ) |
| 20 | 11 19 | eqtri | ⊢ ( 𝑇 ‘ 𝑀 ) = ( 〈“ 𝑋 ”〉 ‘ 0 ) |
| 21 | s1fv | ⊢ ( 𝑋 ∈ 𝑉 → ( 〈“ 𝑋 ”〉 ‘ 0 ) = 𝑋 ) | |
| 22 | 20 21 | eqtrid | ⊢ ( 𝑋 ∈ 𝑉 → ( 𝑇 ‘ 𝑀 ) = 𝑋 ) |