This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of cases2 , not using dedlema or dedlemb . (Contributed by BJ, 6-Apr-2019) (Proof shortened by Wolf Lammen, 2-Jan-2020) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cases2ALT | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∨ ( ¬ 𝜑 ∧ 𝜒 ) ) ↔ ( ( 𝜑 → 𝜓 ) ∧ ( ¬ 𝜑 → 𝜒 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.4 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝜑 → 𝜓 ) ) | |
| 2 | pm2.24 | ⊢ ( 𝜑 → ( ¬ 𝜑 → 𝜒 ) ) | |
| 3 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ¬ 𝜑 → 𝜒 ) ) |
| 4 | 1 3 | jca | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝜑 → 𝜓 ) ∧ ( ¬ 𝜑 → 𝜒 ) ) ) |
| 5 | pm2.21 | ⊢ ( ¬ 𝜑 → ( 𝜑 → 𝜓 ) ) | |
| 6 | 5 | adantr | ⊢ ( ( ¬ 𝜑 ∧ 𝜒 ) → ( 𝜑 → 𝜓 ) ) |
| 7 | pm3.4 | ⊢ ( ( ¬ 𝜑 ∧ 𝜒 ) → ( ¬ 𝜑 → 𝜒 ) ) | |
| 8 | 6 7 | jca | ⊢ ( ( ¬ 𝜑 ∧ 𝜒 ) → ( ( 𝜑 → 𝜓 ) ∧ ( ¬ 𝜑 → 𝜒 ) ) ) |
| 9 | 4 8 | jaoi | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∨ ( ¬ 𝜑 ∧ 𝜒 ) ) → ( ( 𝜑 → 𝜓 ) ∧ ( ¬ 𝜑 → 𝜒 ) ) ) |
| 10 | pm2.27 | ⊢ ( 𝜑 → ( ( 𝜑 → 𝜓 ) → 𝜓 ) ) | |
| 11 | 10 | imdistani | ⊢ ( ( 𝜑 ∧ ( 𝜑 → 𝜓 ) ) → ( 𝜑 ∧ 𝜓 ) ) |
| 12 | 11 | orcd | ⊢ ( ( 𝜑 ∧ ( 𝜑 → 𝜓 ) ) → ( ( 𝜑 ∧ 𝜓 ) ∨ ( ¬ 𝜑 ∧ 𝜒 ) ) ) |
| 13 | 12 | adantrr | ⊢ ( ( 𝜑 ∧ ( ( 𝜑 → 𝜓 ) ∧ ( ¬ 𝜑 → 𝜒 ) ) ) → ( ( 𝜑 ∧ 𝜓 ) ∨ ( ¬ 𝜑 ∧ 𝜒 ) ) ) |
| 14 | pm2.27 | ⊢ ( ¬ 𝜑 → ( ( ¬ 𝜑 → 𝜒 ) → 𝜒 ) ) | |
| 15 | 14 | imdistani | ⊢ ( ( ¬ 𝜑 ∧ ( ¬ 𝜑 → 𝜒 ) ) → ( ¬ 𝜑 ∧ 𝜒 ) ) |
| 16 | 15 | olcd | ⊢ ( ( ¬ 𝜑 ∧ ( ¬ 𝜑 → 𝜒 ) ) → ( ( 𝜑 ∧ 𝜓 ) ∨ ( ¬ 𝜑 ∧ 𝜒 ) ) ) |
| 17 | 16 | adantrl | ⊢ ( ( ¬ 𝜑 ∧ ( ( 𝜑 → 𝜓 ) ∧ ( ¬ 𝜑 → 𝜒 ) ) ) → ( ( 𝜑 ∧ 𝜓 ) ∨ ( ¬ 𝜑 ∧ 𝜒 ) ) ) |
| 18 | 13 17 | pm2.61ian | ⊢ ( ( ( 𝜑 → 𝜓 ) ∧ ( ¬ 𝜑 → 𝜒 ) ) → ( ( 𝜑 ∧ 𝜓 ) ∨ ( ¬ 𝜑 ∧ 𝜒 ) ) ) |
| 19 | 9 18 | impbii | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∨ ( ¬ 𝜑 ∧ 𝜒 ) ) ↔ ( ( 𝜑 → 𝜓 ) ∧ ( ¬ 𝜑 → 𝜒 ) ) ) |