This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of cases2 , not using dedlema or dedlemb . (Contributed by BJ, 6-Apr-2019) (Proof shortened by Wolf Lammen, 2-Jan-2020) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cases2ALT | |- ( ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) <-> ( ( ph -> ps ) /\ ( -. ph -> ch ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.4 | |- ( ( ph /\ ps ) -> ( ph -> ps ) ) |
|
| 2 | pm2.24 | |- ( ph -> ( -. ph -> ch ) ) |
|
| 3 | 2 | adantr | |- ( ( ph /\ ps ) -> ( -. ph -> ch ) ) |
| 4 | 1 3 | jca | |- ( ( ph /\ ps ) -> ( ( ph -> ps ) /\ ( -. ph -> ch ) ) ) |
| 5 | pm2.21 | |- ( -. ph -> ( ph -> ps ) ) |
|
| 6 | 5 | adantr | |- ( ( -. ph /\ ch ) -> ( ph -> ps ) ) |
| 7 | pm3.4 | |- ( ( -. ph /\ ch ) -> ( -. ph -> ch ) ) |
|
| 8 | 6 7 | jca | |- ( ( -. ph /\ ch ) -> ( ( ph -> ps ) /\ ( -. ph -> ch ) ) ) |
| 9 | 4 8 | jaoi | |- ( ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) -> ( ( ph -> ps ) /\ ( -. ph -> ch ) ) ) |
| 10 | pm2.27 | |- ( ph -> ( ( ph -> ps ) -> ps ) ) |
|
| 11 | 10 | imdistani | |- ( ( ph /\ ( ph -> ps ) ) -> ( ph /\ ps ) ) |
| 12 | 11 | orcd | |- ( ( ph /\ ( ph -> ps ) ) -> ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) ) |
| 13 | 12 | adantrr | |- ( ( ph /\ ( ( ph -> ps ) /\ ( -. ph -> ch ) ) ) -> ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) ) |
| 14 | pm2.27 | |- ( -. ph -> ( ( -. ph -> ch ) -> ch ) ) |
|
| 15 | 14 | imdistani | |- ( ( -. ph /\ ( -. ph -> ch ) ) -> ( -. ph /\ ch ) ) |
| 16 | 15 | olcd | |- ( ( -. ph /\ ( -. ph -> ch ) ) -> ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) ) |
| 17 | 16 | adantrl | |- ( ( -. ph /\ ( ( ph -> ps ) /\ ( -. ph -> ch ) ) ) -> ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) ) |
| 18 | 13 17 | pm2.61ian | |- ( ( ( ph -> ps ) /\ ( -. ph -> ch ) ) -> ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) ) |
| 19 | 9 18 | impbii | |- ( ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) <-> ( ( ph -> ps ) /\ ( -. ph -> ch ) ) ) |