This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Case disjunction according to the value of ph . (Contributed by BJ, 6-Apr-2019) (Proof shortened by Wolf Lammen, 28-Feb-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cases2 | |- ( ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) <-> ( ( ph -> ps ) /\ ( -. ph -> ch ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.83 | |- ( ( ( ph -> ( ( ps /\ ph ) \/ ( ch /\ -. ph ) ) ) /\ ( -. ph -> ( ( ps /\ ph ) \/ ( ch /\ -. ph ) ) ) ) <-> ( ( ps /\ ph ) \/ ( ch /\ -. ph ) ) ) |
|
| 2 | dedlema | |- ( ph -> ( ps <-> ( ( ps /\ ph ) \/ ( ch /\ -. ph ) ) ) ) |
|
| 3 | 2 | pm5.74i | |- ( ( ph -> ps ) <-> ( ph -> ( ( ps /\ ph ) \/ ( ch /\ -. ph ) ) ) ) |
| 4 | dedlemb | |- ( -. ph -> ( ch <-> ( ( ps /\ ph ) \/ ( ch /\ -. ph ) ) ) ) |
|
| 5 | 4 | pm5.74i | |- ( ( -. ph -> ch ) <-> ( -. ph -> ( ( ps /\ ph ) \/ ( ch /\ -. ph ) ) ) ) |
| 6 | 3 5 | anbi12i | |- ( ( ( ph -> ps ) /\ ( -. ph -> ch ) ) <-> ( ( ph -> ( ( ps /\ ph ) \/ ( ch /\ -. ph ) ) ) /\ ( -. ph -> ( ( ps /\ ph ) \/ ( ch /\ -. ph ) ) ) ) ) |
| 7 | ancom | |- ( ( ph /\ ps ) <-> ( ps /\ ph ) ) |
|
| 8 | ancom | |- ( ( -. ph /\ ch ) <-> ( ch /\ -. ph ) ) |
|
| 9 | 7 8 | orbi12i | |- ( ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) <-> ( ( ps /\ ph ) \/ ( ch /\ -. ph ) ) ) |
| 10 | 1 6 9 | 3bitr4ri | |- ( ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) <-> ( ( ph -> ps ) /\ ( -. ph -> ch ) ) ) |