This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transfer a relation subset law to the function relation. (Contributed by Mario Carneiro, 28-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caofref.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| caofref.2 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝑆 ) | ||
| caofcom.3 | ⊢ ( 𝜑 → 𝐺 : 𝐴 ⟶ 𝑆 ) | ||
| caofrss.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 𝑅 𝑦 → 𝑥 𝑇 𝑦 ) ) | ||
| Assertion | caofrss | ⊢ ( 𝜑 → ( 𝐹 ∘r 𝑅 𝐺 → 𝐹 ∘r 𝑇 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caofref.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 2 | caofref.2 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝑆 ) | |
| 3 | caofcom.3 | ⊢ ( 𝜑 → 𝐺 : 𝐴 ⟶ 𝑆 ) | |
| 4 | caofrss.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 𝑅 𝑦 → 𝑥 𝑇 𝑦 ) ) | |
| 5 | 2 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑤 ) ∈ 𝑆 ) |
| 6 | 3 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑤 ) ∈ 𝑆 ) |
| 7 | 4 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 𝑅 𝑦 → 𝑥 𝑇 𝑦 ) ) |
| 8 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 𝑅 𝑦 → 𝑥 𝑇 𝑦 ) ) |
| 9 | breq1 | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑤 ) → ( 𝑥 𝑅 𝑦 ↔ ( 𝐹 ‘ 𝑤 ) 𝑅 𝑦 ) ) | |
| 10 | breq1 | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑤 ) → ( 𝑥 𝑇 𝑦 ↔ ( 𝐹 ‘ 𝑤 ) 𝑇 𝑦 ) ) | |
| 11 | 9 10 | imbi12d | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑤 ) → ( ( 𝑥 𝑅 𝑦 → 𝑥 𝑇 𝑦 ) ↔ ( ( 𝐹 ‘ 𝑤 ) 𝑅 𝑦 → ( 𝐹 ‘ 𝑤 ) 𝑇 𝑦 ) ) ) |
| 12 | breq2 | ⊢ ( 𝑦 = ( 𝐺 ‘ 𝑤 ) → ( ( 𝐹 ‘ 𝑤 ) 𝑅 𝑦 ↔ ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) ) | |
| 13 | breq2 | ⊢ ( 𝑦 = ( 𝐺 ‘ 𝑤 ) → ( ( 𝐹 ‘ 𝑤 ) 𝑇 𝑦 ↔ ( 𝐹 ‘ 𝑤 ) 𝑇 ( 𝐺 ‘ 𝑤 ) ) ) | |
| 14 | 12 13 | imbi12d | ⊢ ( 𝑦 = ( 𝐺 ‘ 𝑤 ) → ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 𝑦 → ( 𝐹 ‘ 𝑤 ) 𝑇 𝑦 ) ↔ ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) → ( 𝐹 ‘ 𝑤 ) 𝑇 ( 𝐺 ‘ 𝑤 ) ) ) ) |
| 15 | 11 14 | rspc2va | ⊢ ( ( ( ( 𝐹 ‘ 𝑤 ) ∈ 𝑆 ∧ ( 𝐺 ‘ 𝑤 ) ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 𝑅 𝑦 → 𝑥 𝑇 𝑦 ) ) → ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) → ( 𝐹 ‘ 𝑤 ) 𝑇 ( 𝐺 ‘ 𝑤 ) ) ) |
| 16 | 5 6 8 15 | syl21anc | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) → ( 𝐹 ‘ 𝑤 ) 𝑇 ( 𝐺 ‘ 𝑤 ) ) ) |
| 17 | 16 | ralimdva | ⊢ ( 𝜑 → ( ∀ 𝑤 ∈ 𝐴 ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) → ∀ 𝑤 ∈ 𝐴 ( 𝐹 ‘ 𝑤 ) 𝑇 ( 𝐺 ‘ 𝑤 ) ) ) |
| 18 | 2 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
| 19 | 3 | ffnd | ⊢ ( 𝜑 → 𝐺 Fn 𝐴 ) |
| 20 | inidm | ⊢ ( 𝐴 ∩ 𝐴 ) = 𝐴 | |
| 21 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑤 ) ) | |
| 22 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) | |
| 23 | 18 19 1 1 20 21 22 | ofrfval | ⊢ ( 𝜑 → ( 𝐹 ∘r 𝑅 𝐺 ↔ ∀ 𝑤 ∈ 𝐴 ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) ) |
| 24 | 18 19 1 1 20 21 22 | ofrfval | ⊢ ( 𝜑 → ( 𝐹 ∘r 𝑇 𝐺 ↔ ∀ 𝑤 ∈ 𝐴 ( 𝐹 ‘ 𝑤 ) 𝑇 ( 𝐺 ‘ 𝑤 ) ) ) |
| 25 | 17 23 24 | 3imtr4d | ⊢ ( 𝜑 → ( 𝐹 ∘r 𝑅 𝐺 → 𝐹 ∘r 𝑇 𝐺 ) ) |