This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closed form of brdomain . (Contributed by Scott Fenton, 2-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brdomaing | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 Domain 𝐵 ↔ 𝐵 = dom 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 | ⊢ ( 𝑎 = 𝐴 → ( 𝑎 Domain 𝑏 ↔ 𝐴 Domain 𝑏 ) ) | |
| 2 | dmeq | ⊢ ( 𝑎 = 𝐴 → dom 𝑎 = dom 𝐴 ) | |
| 3 | 2 | eqeq2d | ⊢ ( 𝑎 = 𝐴 → ( 𝑏 = dom 𝑎 ↔ 𝑏 = dom 𝐴 ) ) |
| 4 | 1 3 | bibi12d | ⊢ ( 𝑎 = 𝐴 → ( ( 𝑎 Domain 𝑏 ↔ 𝑏 = dom 𝑎 ) ↔ ( 𝐴 Domain 𝑏 ↔ 𝑏 = dom 𝐴 ) ) ) |
| 5 | breq2 | ⊢ ( 𝑏 = 𝐵 → ( 𝐴 Domain 𝑏 ↔ 𝐴 Domain 𝐵 ) ) | |
| 6 | eqeq1 | ⊢ ( 𝑏 = 𝐵 → ( 𝑏 = dom 𝐴 ↔ 𝐵 = dom 𝐴 ) ) | |
| 7 | 5 6 | bibi12d | ⊢ ( 𝑏 = 𝐵 → ( ( 𝐴 Domain 𝑏 ↔ 𝑏 = dom 𝐴 ) ↔ ( 𝐴 Domain 𝐵 ↔ 𝐵 = dom 𝐴 ) ) ) |
| 8 | vex | ⊢ 𝑎 ∈ V | |
| 9 | vex | ⊢ 𝑏 ∈ V | |
| 10 | 8 9 | brdomain | ⊢ ( 𝑎 Domain 𝑏 ↔ 𝑏 = dom 𝑎 ) |
| 11 | 4 7 10 | vtocl2g | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 Domain 𝐵 ↔ 𝐵 = dom 𝐴 ) ) |