This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closed form of brdomain . (Contributed by Scott Fenton, 2-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brdomaing | |- ( ( A e. V /\ B e. W ) -> ( A Domain B <-> B = dom A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 | |- ( a = A -> ( a Domain b <-> A Domain b ) ) |
|
| 2 | dmeq | |- ( a = A -> dom a = dom A ) |
|
| 3 | 2 | eqeq2d | |- ( a = A -> ( b = dom a <-> b = dom A ) ) |
| 4 | 1 3 | bibi12d | |- ( a = A -> ( ( a Domain b <-> b = dom a ) <-> ( A Domain b <-> b = dom A ) ) ) |
| 5 | breq2 | |- ( b = B -> ( A Domain b <-> A Domain B ) ) |
|
| 6 | eqeq1 | |- ( b = B -> ( b = dom A <-> B = dom A ) ) |
|
| 7 | 5 6 | bibi12d | |- ( b = B -> ( ( A Domain b <-> b = dom A ) <-> ( A Domain B <-> B = dom A ) ) ) |
| 8 | vex | |- a e. _V |
|
| 9 | vex | |- b e. _V |
|
| 10 | 8 9 | brdomain | |- ( a Domain b <-> b = dom a ) |
| 11 | 4 7 10 | vtocl2g | |- ( ( A e. V /\ B e. W ) -> ( A Domain B <-> B = dom A ) ) |