This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Expressing that two sets are related by a binary relation which is expressed as a class abstraction of ordered pairs. (Contributed by Zhi Wang, 24-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | brab2dd.1 | ⊢ ( 𝜑 → 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝜓 ) } ) | |
| brab2ddw.2 | ⊢ ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜃 ) ) | ||
| brab2ddw.3 | ⊢ ( 𝑦 = 𝐵 → ( 𝜃 ↔ 𝜒 ) ) | ||
| brab2ddw2.4 | ⊢ ( 𝑥 = 𝐴 → 𝐶 = 𝑈 ) | ||
| brab2ddw2.5 | ⊢ ( 𝑦 = 𝐵 → 𝐷 = 𝑉 ) | ||
| Assertion | brab2ddw2 | ⊢ ( 𝜑 → ( 𝐴 𝑅 𝐵 ↔ ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝜒 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brab2dd.1 | ⊢ ( 𝜑 → 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝜓 ) } ) | |
| 2 | brab2ddw.2 | ⊢ ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜃 ) ) | |
| 3 | brab2ddw.3 | ⊢ ( 𝑦 = 𝐵 → ( 𝜃 ↔ 𝜒 ) ) | |
| 4 | brab2ddw2.4 | ⊢ ( 𝑥 = 𝐴 → 𝐶 = 𝑈 ) | |
| 5 | brab2ddw2.5 | ⊢ ( 𝑦 = 𝐵 → 𝐷 = 𝑉 ) | |
| 6 | 2 3 | sylan9bb | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝜓 ↔ 𝜒 ) ) |
| 7 | 6 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → ( 𝜓 ↔ 𝜒 ) ) |
| 8 | id | ⊢ ( 𝑥 = 𝐴 → 𝑥 = 𝐴 ) | |
| 9 | 8 4 | eleq12d | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝐶 ↔ 𝐴 ∈ 𝑈 ) ) |
| 10 | id | ⊢ ( 𝑦 = 𝐵 → 𝑦 = 𝐵 ) | |
| 11 | 10 5 | eleq12d | ⊢ ( 𝑦 = 𝐵 → ( 𝑦 ∈ 𝐷 ↔ 𝐵 ∈ 𝑉 ) ) |
| 12 | 9 11 | bi2anan9 | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ↔ ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ) ) |
| 13 | 12 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ↔ ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ) ) |
| 14 | 1 7 13 | brab2dd | ⊢ ( 𝜑 → ( 𝐴 𝑅 𝐵 ↔ ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝜒 ) ) ) |