This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Expressing that two sets are related by a binary relation which is expressed as a class abstraction of ordered pairs. (Contributed by Zhi Wang, 24-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | brab2dd.1 | |- ( ph -> R = { <. x , y >. | ( ( x e. C /\ y e. D ) /\ ps ) } ) |
|
| brab2ddw.2 | |- ( x = A -> ( ps <-> th ) ) |
||
| brab2ddw.3 | |- ( y = B -> ( th <-> ch ) ) |
||
| brab2ddw2.4 | |- ( x = A -> C = U ) |
||
| brab2ddw2.5 | |- ( y = B -> D = V ) |
||
| Assertion | brab2ddw2 | |- ( ph -> ( A R B <-> ( ( A e. U /\ B e. V ) /\ ch ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brab2dd.1 | |- ( ph -> R = { <. x , y >. | ( ( x e. C /\ y e. D ) /\ ps ) } ) |
|
| 2 | brab2ddw.2 | |- ( x = A -> ( ps <-> th ) ) |
|
| 3 | brab2ddw.3 | |- ( y = B -> ( th <-> ch ) ) |
|
| 4 | brab2ddw2.4 | |- ( x = A -> C = U ) |
|
| 5 | brab2ddw2.5 | |- ( y = B -> D = V ) |
|
| 6 | 2 3 | sylan9bb | |- ( ( x = A /\ y = B ) -> ( ps <-> ch ) ) |
| 7 | 6 | adantl | |- ( ( ph /\ ( x = A /\ y = B ) ) -> ( ps <-> ch ) ) |
| 8 | id | |- ( x = A -> x = A ) |
|
| 9 | 8 4 | eleq12d | |- ( x = A -> ( x e. C <-> A e. U ) ) |
| 10 | id | |- ( y = B -> y = B ) |
|
| 11 | 10 5 | eleq12d | |- ( y = B -> ( y e. D <-> B e. V ) ) |
| 12 | 9 11 | bi2anan9 | |- ( ( x = A /\ y = B ) -> ( ( x e. C /\ y e. D ) <-> ( A e. U /\ B e. V ) ) ) |
| 13 | 12 | adantl | |- ( ( ph /\ ( x = A /\ y = B ) ) -> ( ( x e. C /\ y e. D ) <-> ( A e. U /\ B e. V ) ) ) |
| 14 | 1 7 13 | brab2dd | |- ( ph -> ( A R B <-> ( ( A e. U /\ B e. V ) /\ ch ) ) ) |