This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subspace of a Banach space is a Banach space iff it is closed in the norm-induced metric of the parent space. (Contributed by NM, 1-Feb-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bnsscmcl.x | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| bnsscmcl.d | ⊢ 𝐷 = ( IndMet ‘ 𝑈 ) | ||
| bnsscmcl.j | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | ||
| bnsscmcl.h | ⊢ 𝐻 = ( SubSp ‘ 𝑈 ) | ||
| bnsscmcl.y | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | ||
| Assertion | bnsscmcl | ⊢ ( ( 𝑈 ∈ CBan ∧ 𝑊 ∈ 𝐻 ) → ( 𝑊 ∈ CBan ↔ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnsscmcl.x | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | bnsscmcl.d | ⊢ 𝐷 = ( IndMet ‘ 𝑈 ) | |
| 3 | bnsscmcl.j | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 4 | bnsscmcl.h | ⊢ 𝐻 = ( SubSp ‘ 𝑈 ) | |
| 5 | bnsscmcl.y | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | |
| 6 | bnnv | ⊢ ( 𝑈 ∈ CBan → 𝑈 ∈ NrmCVec ) | |
| 7 | 4 | sspnv | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝑊 ∈ NrmCVec ) |
| 8 | 6 7 | sylan | ⊢ ( ( 𝑈 ∈ CBan ∧ 𝑊 ∈ 𝐻 ) → 𝑊 ∈ NrmCVec ) |
| 9 | eqid | ⊢ ( IndMet ‘ 𝑊 ) = ( IndMet ‘ 𝑊 ) | |
| 10 | 5 9 | iscbn | ⊢ ( 𝑊 ∈ CBan ↔ ( 𝑊 ∈ NrmCVec ∧ ( IndMet ‘ 𝑊 ) ∈ ( CMet ‘ 𝑌 ) ) ) |
| 11 | 10 | baib | ⊢ ( 𝑊 ∈ NrmCVec → ( 𝑊 ∈ CBan ↔ ( IndMet ‘ 𝑊 ) ∈ ( CMet ‘ 𝑌 ) ) ) |
| 12 | 8 11 | syl | ⊢ ( ( 𝑈 ∈ CBan ∧ 𝑊 ∈ 𝐻 ) → ( 𝑊 ∈ CBan ↔ ( IndMet ‘ 𝑊 ) ∈ ( CMet ‘ 𝑌 ) ) ) |
| 13 | 5 2 9 4 | sspims | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( IndMet ‘ 𝑊 ) = ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) |
| 14 | 6 13 | sylan | ⊢ ( ( 𝑈 ∈ CBan ∧ 𝑊 ∈ 𝐻 ) → ( IndMet ‘ 𝑊 ) = ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) |
| 15 | 14 | eleq1d | ⊢ ( ( 𝑈 ∈ CBan ∧ 𝑊 ∈ 𝐻 ) → ( ( IndMet ‘ 𝑊 ) ∈ ( CMet ‘ 𝑌 ) ↔ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( CMet ‘ 𝑌 ) ) ) |
| 16 | 1 2 | cbncms | ⊢ ( 𝑈 ∈ CBan → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) |
| 17 | 16 | adantr | ⊢ ( ( 𝑈 ∈ CBan ∧ 𝑊 ∈ 𝐻 ) → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) |
| 18 | 3 | cmetss | ⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → ( ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( CMet ‘ 𝑌 ) ↔ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 19 | 17 18 | syl | ⊢ ( ( 𝑈 ∈ CBan ∧ 𝑊 ∈ 𝐻 ) → ( ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( CMet ‘ 𝑌 ) ↔ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 20 | 12 15 19 | 3bitrd | ⊢ ( ( 𝑈 ∈ CBan ∧ 𝑊 ∈ 𝐻 ) → ( 𝑊 ∈ CBan ↔ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) ) |