This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem bnsca

Description: The scalar field of a Banach space is complete. (Contributed by NM, 8-Sep-2007) (Revised by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypothesis isbn.1 F = Scalar W
Assertion bnsca W Ban F CMetSp

Proof

Step Hyp Ref Expression
1 isbn.1 F = Scalar W
2 1 isbn W Ban W NrmVec W CMetSp F CMetSp
3 2 simp3bi W Ban F CMetSp