This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of axprlem3 as of 18-Sep-2025. (Contributed by Rohan Ridenour, 10-Aug-2023) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axprlem3OLD | ⊢ ∃ 𝑧 ∀ 𝑤 ( 𝑤 ∈ 𝑧 ↔ ∃ 𝑠 ( 𝑠 ∈ 𝑝 ∧ if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv | ⊢ Ⅎ 𝑧 if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) | |
| 2 | 1 | axrep4 | ⊢ ( ∀ 𝑠 ∃ 𝑧 ∀ 𝑤 ( if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) → 𝑤 = 𝑧 ) → ∃ 𝑧 ∀ 𝑤 ( 𝑤 ∈ 𝑧 ↔ ∃ 𝑠 ( 𝑠 ∈ 𝑝 ∧ if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ) ) ) |
| 3 | ax6evr | ⊢ ∃ 𝑧 𝑥 = 𝑧 | |
| 4 | ifptru | ⊢ ( ∃ 𝑛 𝑛 ∈ 𝑠 → ( if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ↔ 𝑤 = 𝑥 ) ) | |
| 5 | 4 | biimpd | ⊢ ( ∃ 𝑛 𝑛 ∈ 𝑠 → ( if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) → 𝑤 = 𝑥 ) ) |
| 6 | equtrr | ⊢ ( 𝑥 = 𝑧 → ( 𝑤 = 𝑥 → 𝑤 = 𝑧 ) ) | |
| 7 | 5 6 | sylan9r | ⊢ ( ( 𝑥 = 𝑧 ∧ ∃ 𝑛 𝑛 ∈ 𝑠 ) → ( if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) → 𝑤 = 𝑧 ) ) |
| 8 | 7 | alrimiv | ⊢ ( ( 𝑥 = 𝑧 ∧ ∃ 𝑛 𝑛 ∈ 𝑠 ) → ∀ 𝑤 ( if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) → 𝑤 = 𝑧 ) ) |
| 9 | 8 | expcom | ⊢ ( ∃ 𝑛 𝑛 ∈ 𝑠 → ( 𝑥 = 𝑧 → ∀ 𝑤 ( if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) → 𝑤 = 𝑧 ) ) ) |
| 10 | 9 | eximdv | ⊢ ( ∃ 𝑛 𝑛 ∈ 𝑠 → ( ∃ 𝑧 𝑥 = 𝑧 → ∃ 𝑧 ∀ 𝑤 ( if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) → 𝑤 = 𝑧 ) ) ) |
| 11 | 3 10 | mpi | ⊢ ( ∃ 𝑛 𝑛 ∈ 𝑠 → ∃ 𝑧 ∀ 𝑤 ( if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) → 𝑤 = 𝑧 ) ) |
| 12 | ax6evr | ⊢ ∃ 𝑧 𝑦 = 𝑧 | |
| 13 | ifpfal | ⊢ ( ¬ ∃ 𝑛 𝑛 ∈ 𝑠 → ( if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ↔ 𝑤 = 𝑦 ) ) | |
| 14 | 13 | biimpd | ⊢ ( ¬ ∃ 𝑛 𝑛 ∈ 𝑠 → ( if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) → 𝑤 = 𝑦 ) ) |
| 15 | 14 | adantl | ⊢ ( ( 𝑦 = 𝑧 ∧ ¬ ∃ 𝑛 𝑛 ∈ 𝑠 ) → ( if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) → 𝑤 = 𝑦 ) ) |
| 16 | simpl | ⊢ ( ( 𝑦 = 𝑧 ∧ ¬ ∃ 𝑛 𝑛 ∈ 𝑠 ) → 𝑦 = 𝑧 ) | |
| 17 | equtr | ⊢ ( 𝑤 = 𝑦 → ( 𝑦 = 𝑧 → 𝑤 = 𝑧 ) ) | |
| 18 | 15 16 17 | syl6ci | ⊢ ( ( 𝑦 = 𝑧 ∧ ¬ ∃ 𝑛 𝑛 ∈ 𝑠 ) → ( if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) → 𝑤 = 𝑧 ) ) |
| 19 | 18 | alrimiv | ⊢ ( ( 𝑦 = 𝑧 ∧ ¬ ∃ 𝑛 𝑛 ∈ 𝑠 ) → ∀ 𝑤 ( if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) → 𝑤 = 𝑧 ) ) |
| 20 | 19 | expcom | ⊢ ( ¬ ∃ 𝑛 𝑛 ∈ 𝑠 → ( 𝑦 = 𝑧 → ∀ 𝑤 ( if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) → 𝑤 = 𝑧 ) ) ) |
| 21 | 20 | eximdv | ⊢ ( ¬ ∃ 𝑛 𝑛 ∈ 𝑠 → ( ∃ 𝑧 𝑦 = 𝑧 → ∃ 𝑧 ∀ 𝑤 ( if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) → 𝑤 = 𝑧 ) ) ) |
| 22 | 12 21 | mpi | ⊢ ( ¬ ∃ 𝑛 𝑛 ∈ 𝑠 → ∃ 𝑧 ∀ 𝑤 ( if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) → 𝑤 = 𝑧 ) ) |
| 23 | 11 22 | pm2.61i | ⊢ ∃ 𝑧 ∀ 𝑤 ( if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) → 𝑤 = 𝑧 ) |
| 24 | 2 23 | mpg | ⊢ ∃ 𝑧 ∀ 𝑤 ( 𝑤 ∈ 𝑧 ↔ ∃ 𝑠 ( 𝑠 ∈ 𝑝 ∧ if- ( ∃ 𝑛 𝑛 ∈ 𝑠 , 𝑤 = 𝑥 , 𝑤 = 𝑦 ) ) ) |