This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of axprlem3 as of 18-Sep-2025. (Contributed by Rohan Ridenour, 10-Aug-2023) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axprlem3OLD | |- E. z A. w ( w e. z <-> E. s ( s e. p /\ if- ( E. n n e. s , w = x , w = y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv | |- F/ z if- ( E. n n e. s , w = x , w = y ) |
|
| 2 | 1 | axrep4 | |- ( A. s E. z A. w ( if- ( E. n n e. s , w = x , w = y ) -> w = z ) -> E. z A. w ( w e. z <-> E. s ( s e. p /\ if- ( E. n n e. s , w = x , w = y ) ) ) ) |
| 3 | ax6evr | |- E. z x = z |
|
| 4 | ifptru | |- ( E. n n e. s -> ( if- ( E. n n e. s , w = x , w = y ) <-> w = x ) ) |
|
| 5 | 4 | biimpd | |- ( E. n n e. s -> ( if- ( E. n n e. s , w = x , w = y ) -> w = x ) ) |
| 6 | equtrr | |- ( x = z -> ( w = x -> w = z ) ) |
|
| 7 | 5 6 | sylan9r | |- ( ( x = z /\ E. n n e. s ) -> ( if- ( E. n n e. s , w = x , w = y ) -> w = z ) ) |
| 8 | 7 | alrimiv | |- ( ( x = z /\ E. n n e. s ) -> A. w ( if- ( E. n n e. s , w = x , w = y ) -> w = z ) ) |
| 9 | 8 | expcom | |- ( E. n n e. s -> ( x = z -> A. w ( if- ( E. n n e. s , w = x , w = y ) -> w = z ) ) ) |
| 10 | 9 | eximdv | |- ( E. n n e. s -> ( E. z x = z -> E. z A. w ( if- ( E. n n e. s , w = x , w = y ) -> w = z ) ) ) |
| 11 | 3 10 | mpi | |- ( E. n n e. s -> E. z A. w ( if- ( E. n n e. s , w = x , w = y ) -> w = z ) ) |
| 12 | ax6evr | |- E. z y = z |
|
| 13 | ifpfal | |- ( -. E. n n e. s -> ( if- ( E. n n e. s , w = x , w = y ) <-> w = y ) ) |
|
| 14 | 13 | biimpd | |- ( -. E. n n e. s -> ( if- ( E. n n e. s , w = x , w = y ) -> w = y ) ) |
| 15 | 14 | adantl | |- ( ( y = z /\ -. E. n n e. s ) -> ( if- ( E. n n e. s , w = x , w = y ) -> w = y ) ) |
| 16 | simpl | |- ( ( y = z /\ -. E. n n e. s ) -> y = z ) |
|
| 17 | equtr | |- ( w = y -> ( y = z -> w = z ) ) |
|
| 18 | 15 16 17 | syl6ci | |- ( ( y = z /\ -. E. n n e. s ) -> ( if- ( E. n n e. s , w = x , w = y ) -> w = z ) ) |
| 19 | 18 | alrimiv | |- ( ( y = z /\ -. E. n n e. s ) -> A. w ( if- ( E. n n e. s , w = x , w = y ) -> w = z ) ) |
| 20 | 19 | expcom | |- ( -. E. n n e. s -> ( y = z -> A. w ( if- ( E. n n e. s , w = x , w = y ) -> w = z ) ) ) |
| 21 | 20 | eximdv | |- ( -. E. n n e. s -> ( E. z y = z -> E. z A. w ( if- ( E. n n e. s , w = x , w = y ) -> w = z ) ) ) |
| 22 | 12 21 | mpi | |- ( -. E. n n e. s -> E. z A. w ( if- ( E. n n e. s , w = x , w = y ) -> w = z ) ) |
| 23 | 11 22 | pm2.61i | |- E. z A. w ( if- ( E. n n e. s , w = x , w = y ) -> w = z ) |
| 24 | 2 23 | mpg | |- E. z A. w ( w e. z <-> E. s ( s e. p /\ if- ( E. n n e. s , w = x , w = y ) ) ) |