This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: _i is a complex number. Axiom 3 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-icn . (Contributed by NM, 23-Feb-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axicn | ⊢ i ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0r | ⊢ 0R ∈ R | |
| 2 | 1sr | ⊢ 1R ∈ R | |
| 3 | df-i | ⊢ i = 〈 0R , 1R 〉 | |
| 4 | 3 | eleq1i | ⊢ ( i ∈ ℂ ↔ 〈 0R , 1R 〉 ∈ ℂ ) |
| 5 | opelcn | ⊢ ( 〈 0R , 1R 〉 ∈ ℂ ↔ ( 0R ∈ R ∧ 1R ∈ R ) ) | |
| 6 | 4 5 | bitri | ⊢ ( i ∈ ℂ ↔ ( 0R ∈ R ∧ 1R ∈ R ) ) |
| 7 | 1 2 6 | mpbir2an | ⊢ i ∈ ℂ |