This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: This theorem shows that, given ax-c16 , we can derive a version of ax-c11n . However, it is weaker than ax-c11n because it has a distinct variable requirement. (Contributed by Andrew Salmon, 27-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axc11n-16 | ⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ∀ 𝑧 𝑧 = 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-c16 | ⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( 𝑥 = 𝑤 → ∀ 𝑥 𝑥 = 𝑤 ) ) | |
| 2 | 1 | alrimiv | ⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ∀ 𝑤 ( 𝑥 = 𝑤 → ∀ 𝑥 𝑥 = 𝑤 ) ) |
| 3 | 2 | axc4i-o | ⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ∀ 𝑥 ∀ 𝑤 ( 𝑥 = 𝑤 → ∀ 𝑥 𝑥 = 𝑤 ) ) |
| 4 | equequ1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 = 𝑤 ↔ 𝑧 = 𝑤 ) ) | |
| 5 | 4 | cbvalvw | ⊢ ( ∀ 𝑥 𝑥 = 𝑤 ↔ ∀ 𝑧 𝑧 = 𝑤 ) |
| 6 | 5 | a1i | ⊢ ( 𝑥 = 𝑧 → ( ∀ 𝑥 𝑥 = 𝑤 ↔ ∀ 𝑧 𝑧 = 𝑤 ) ) |
| 7 | 4 6 | imbi12d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 = 𝑤 → ∀ 𝑥 𝑥 = 𝑤 ) ↔ ( 𝑧 = 𝑤 → ∀ 𝑧 𝑧 = 𝑤 ) ) ) |
| 8 | 7 | albidv | ⊢ ( 𝑥 = 𝑧 → ( ∀ 𝑤 ( 𝑥 = 𝑤 → ∀ 𝑥 𝑥 = 𝑤 ) ↔ ∀ 𝑤 ( 𝑧 = 𝑤 → ∀ 𝑧 𝑧 = 𝑤 ) ) ) |
| 9 | 8 | cbvalvw | ⊢ ( ∀ 𝑥 ∀ 𝑤 ( 𝑥 = 𝑤 → ∀ 𝑥 𝑥 = 𝑤 ) ↔ ∀ 𝑧 ∀ 𝑤 ( 𝑧 = 𝑤 → ∀ 𝑧 𝑧 = 𝑤 ) ) |
| 10 | 9 | biimpi | ⊢ ( ∀ 𝑥 ∀ 𝑤 ( 𝑥 = 𝑤 → ∀ 𝑥 𝑥 = 𝑤 ) → ∀ 𝑧 ∀ 𝑤 ( 𝑧 = 𝑤 → ∀ 𝑧 𝑧 = 𝑤 ) ) |
| 11 | nfa1-o | ⊢ Ⅎ 𝑧 ∀ 𝑧 𝑧 = 𝑤 | |
| 12 | 11 | 19.23 | ⊢ ( ∀ 𝑧 ( 𝑧 = 𝑤 → ∀ 𝑧 𝑧 = 𝑤 ) ↔ ( ∃ 𝑧 𝑧 = 𝑤 → ∀ 𝑧 𝑧 = 𝑤 ) ) |
| 13 | 12 | albii | ⊢ ( ∀ 𝑤 ∀ 𝑧 ( 𝑧 = 𝑤 → ∀ 𝑧 𝑧 = 𝑤 ) ↔ ∀ 𝑤 ( ∃ 𝑧 𝑧 = 𝑤 → ∀ 𝑧 𝑧 = 𝑤 ) ) |
| 14 | ax6ev | ⊢ ∃ 𝑧 𝑧 = 𝑤 | |
| 15 | pm2.27 | ⊢ ( ∃ 𝑧 𝑧 = 𝑤 → ( ( ∃ 𝑧 𝑧 = 𝑤 → ∀ 𝑧 𝑧 = 𝑤 ) → ∀ 𝑧 𝑧 = 𝑤 ) ) | |
| 16 | 14 15 | ax-mp | ⊢ ( ( ∃ 𝑧 𝑧 = 𝑤 → ∀ 𝑧 𝑧 = 𝑤 ) → ∀ 𝑧 𝑧 = 𝑤 ) |
| 17 | 16 | alimi | ⊢ ( ∀ 𝑤 ( ∃ 𝑧 𝑧 = 𝑤 → ∀ 𝑧 𝑧 = 𝑤 ) → ∀ 𝑤 ∀ 𝑧 𝑧 = 𝑤 ) |
| 18 | equequ2 | ⊢ ( 𝑤 = 𝑥 → ( 𝑧 = 𝑤 ↔ 𝑧 = 𝑥 ) ) | |
| 19 | 18 | spv | ⊢ ( ∀ 𝑤 𝑧 = 𝑤 → 𝑧 = 𝑥 ) |
| 20 | 19 | sps-o | ⊢ ( ∀ 𝑧 ∀ 𝑤 𝑧 = 𝑤 → 𝑧 = 𝑥 ) |
| 21 | 20 | alcoms | ⊢ ( ∀ 𝑤 ∀ 𝑧 𝑧 = 𝑤 → 𝑧 = 𝑥 ) |
| 22 | 17 21 | syl | ⊢ ( ∀ 𝑤 ( ∃ 𝑧 𝑧 = 𝑤 → ∀ 𝑧 𝑧 = 𝑤 ) → 𝑧 = 𝑥 ) |
| 23 | 13 22 | sylbi | ⊢ ( ∀ 𝑤 ∀ 𝑧 ( 𝑧 = 𝑤 → ∀ 𝑧 𝑧 = 𝑤 ) → 𝑧 = 𝑥 ) |
| 24 | 23 | alcoms | ⊢ ( ∀ 𝑧 ∀ 𝑤 ( 𝑧 = 𝑤 → ∀ 𝑧 𝑧 = 𝑤 ) → 𝑧 = 𝑥 ) |
| 25 | 24 | axc4i-o | ⊢ ( ∀ 𝑧 ∀ 𝑤 ( 𝑧 = 𝑤 → ∀ 𝑧 𝑧 = 𝑤 ) → ∀ 𝑧 𝑧 = 𝑥 ) |
| 26 | 3 10 25 | 3syl | ⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ∀ 𝑧 𝑧 = 𝑥 ) |