This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Example of an application of ax12w that results in an instance of ax-12 for a contrived formula with mixed free and bound variables, ( x e. y /\ A. x z e. x /\ A. y A. z y e. x ) , in place of ph . The proof illustrates bound variable renaming with cbvalvw to obtain fresh variables to avoid distinct variable clashes. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 14-Apr-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ax12wdemo | ⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑥 𝑧 ∈ 𝑥 ∧ ∀ 𝑦 ∀ 𝑧 𝑦 ∈ 𝑥 ) → ∀ 𝑥 ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑥 𝑧 ∈ 𝑥 ∧ ∀ 𝑦 ∀ 𝑧 𝑦 ∈ 𝑥 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elequ1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑦 ↔ 𝑦 ∈ 𝑦 ) ) | |
| 2 | elequ2 | ⊢ ( 𝑥 = 𝑤 → ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑤 ) ) | |
| 3 | 2 | cbvalvw | ⊢ ( ∀ 𝑥 𝑧 ∈ 𝑥 ↔ ∀ 𝑤 𝑧 ∈ 𝑤 ) |
| 4 | 3 | a1i | ⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑥 𝑧 ∈ 𝑥 ↔ ∀ 𝑤 𝑧 ∈ 𝑤 ) ) |
| 5 | elequ1 | ⊢ ( 𝑦 = 𝑣 → ( 𝑦 ∈ 𝑥 ↔ 𝑣 ∈ 𝑥 ) ) | |
| 6 | 5 | albidv | ⊢ ( 𝑦 = 𝑣 → ( ∀ 𝑧 𝑦 ∈ 𝑥 ↔ ∀ 𝑧 𝑣 ∈ 𝑥 ) ) |
| 7 | 6 | cbvalvw | ⊢ ( ∀ 𝑦 ∀ 𝑧 𝑦 ∈ 𝑥 ↔ ∀ 𝑣 ∀ 𝑧 𝑣 ∈ 𝑥 ) |
| 8 | elequ2 | ⊢ ( 𝑥 = 𝑦 → ( 𝑣 ∈ 𝑥 ↔ 𝑣 ∈ 𝑦 ) ) | |
| 9 | 8 | albidv | ⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑧 𝑣 ∈ 𝑥 ↔ ∀ 𝑧 𝑣 ∈ 𝑦 ) ) |
| 10 | 9 | albidv | ⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑣 ∀ 𝑧 𝑣 ∈ 𝑥 ↔ ∀ 𝑣 ∀ 𝑧 𝑣 ∈ 𝑦 ) ) |
| 11 | 7 10 | bitrid | ⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑦 ∀ 𝑧 𝑦 ∈ 𝑥 ↔ ∀ 𝑣 ∀ 𝑧 𝑣 ∈ 𝑦 ) ) |
| 12 | 1 4 11 | 3anbi123d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑥 𝑧 ∈ 𝑥 ∧ ∀ 𝑦 ∀ 𝑧 𝑦 ∈ 𝑥 ) ↔ ( 𝑦 ∈ 𝑦 ∧ ∀ 𝑤 𝑧 ∈ 𝑤 ∧ ∀ 𝑣 ∀ 𝑧 𝑣 ∈ 𝑦 ) ) ) |
| 13 | elequ2 | ⊢ ( 𝑦 = 𝑣 → ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑣 ) ) | |
| 14 | 7 | a1i | ⊢ ( 𝑦 = 𝑣 → ( ∀ 𝑦 ∀ 𝑧 𝑦 ∈ 𝑥 ↔ ∀ 𝑣 ∀ 𝑧 𝑣 ∈ 𝑥 ) ) |
| 15 | 13 14 | 3anbi13d | ⊢ ( 𝑦 = 𝑣 → ( ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑥 𝑧 ∈ 𝑥 ∧ ∀ 𝑦 ∀ 𝑧 𝑦 ∈ 𝑥 ) ↔ ( 𝑥 ∈ 𝑣 ∧ ∀ 𝑥 𝑧 ∈ 𝑥 ∧ ∀ 𝑣 ∀ 𝑧 𝑣 ∈ 𝑥 ) ) ) |
| 16 | 12 15 | ax12w | ⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑥 𝑧 ∈ 𝑥 ∧ ∀ 𝑦 ∀ 𝑧 𝑦 ∈ 𝑥 ) → ∀ 𝑥 ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑥 𝑧 ∈ 𝑥 ∧ ∀ 𝑦 ∀ 𝑧 𝑦 ∈ 𝑥 ) ) ) ) |