This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Induction step for constructing a substitution instance of ax-c15 without using ax-c15 . Quantification case. (When z and y are distinct, ax12inda2 may be used instead to avoid the dummy variable w in the proof.) (Contributed by NM, 24-Jan-2007) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ax12inda.1 | |- ( -. A. x x = w -> ( x = w -> ( ph -> A. x ( x = w -> ph ) ) ) ) |
|
| Assertion | ax12inda | |- ( -. A. x x = y -> ( x = y -> ( A. z ph -> A. x ( x = y -> A. z ph ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax12inda.1 | |- ( -. A. x x = w -> ( x = w -> ( ph -> A. x ( x = w -> ph ) ) ) ) |
|
| 2 | ax6ev | |- E. w w = y |
|
| 3 | 1 | ax12inda2 | |- ( -. A. x x = w -> ( x = w -> ( A. z ph -> A. x ( x = w -> A. z ph ) ) ) ) |
| 4 | dveeq2-o | |- ( -. A. x x = y -> ( w = y -> A. x w = y ) ) |
|
| 5 | 4 | imp | |- ( ( -. A. x x = y /\ w = y ) -> A. x w = y ) |
| 6 | hba1-o | |- ( A. x w = y -> A. x A. x w = y ) |
|
| 7 | equequ2 | |- ( w = y -> ( x = w <-> x = y ) ) |
|
| 8 | 7 | sps-o | |- ( A. x w = y -> ( x = w <-> x = y ) ) |
| 9 | 6 8 | albidh | |- ( A. x w = y -> ( A. x x = w <-> A. x x = y ) ) |
| 10 | 9 | notbid | |- ( A. x w = y -> ( -. A. x x = w <-> -. A. x x = y ) ) |
| 11 | 5 10 | syl | |- ( ( -. A. x x = y /\ w = y ) -> ( -. A. x x = w <-> -. A. x x = y ) ) |
| 12 | 7 | adantl | |- ( ( -. A. x x = y /\ w = y ) -> ( x = w <-> x = y ) ) |
| 13 | 8 | imbi1d | |- ( A. x w = y -> ( ( x = w -> A. z ph ) <-> ( x = y -> A. z ph ) ) ) |
| 14 | 6 13 | albidh | |- ( A. x w = y -> ( A. x ( x = w -> A. z ph ) <-> A. x ( x = y -> A. z ph ) ) ) |
| 15 | 5 14 | syl | |- ( ( -. A. x x = y /\ w = y ) -> ( A. x ( x = w -> A. z ph ) <-> A. x ( x = y -> A. z ph ) ) ) |
| 16 | 15 | imbi2d | |- ( ( -. A. x x = y /\ w = y ) -> ( ( A. z ph -> A. x ( x = w -> A. z ph ) ) <-> ( A. z ph -> A. x ( x = y -> A. z ph ) ) ) ) |
| 17 | 12 16 | imbi12d | |- ( ( -. A. x x = y /\ w = y ) -> ( ( x = w -> ( A. z ph -> A. x ( x = w -> A. z ph ) ) ) <-> ( x = y -> ( A. z ph -> A. x ( x = y -> A. z ph ) ) ) ) ) |
| 18 | 11 17 | imbi12d | |- ( ( -. A. x x = y /\ w = y ) -> ( ( -. A. x x = w -> ( x = w -> ( A. z ph -> A. x ( x = w -> A. z ph ) ) ) ) <-> ( -. A. x x = y -> ( x = y -> ( A. z ph -> A. x ( x = y -> A. z ph ) ) ) ) ) ) |
| 19 | 3 18 | mpbii | |- ( ( -. A. x x = y /\ w = y ) -> ( -. A. x x = y -> ( x = y -> ( A. z ph -> A. x ( x = y -> A. z ph ) ) ) ) ) |
| 20 | 19 | ex | |- ( -. A. x x = y -> ( w = y -> ( -. A. x x = y -> ( x = y -> ( A. z ph -> A. x ( x = y -> A. z ph ) ) ) ) ) ) |
| 21 | 20 | exlimdv | |- ( -. A. x x = y -> ( E. w w = y -> ( -. A. x x = y -> ( x = y -> ( A. z ph -> A. x ( x = y -> A. z ph ) ) ) ) ) ) |
| 22 | 2 21 | mpi | |- ( -. A. x x = y -> ( -. A. x x = y -> ( x = y -> ( A. z ph -> A. x ( x = y -> A. z ph ) ) ) ) ) |
| 23 | 22 | pm2.43i | |- ( -. A. x x = y -> ( x = y -> ( A. z ph -> A. x ( x = y -> A. z ph ) ) ) ) |