This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Tarski-Grothendieck Axiom. For every set x there is an inaccessible cardinal y such that y is not in x . The addition of this axiom to ZFC set theory provides a framework for category theory, thus for all practical purposes giving us a complete foundation for "all of mathematics". This version of the axiom is used by the Mizar project ( http://www.mizar.org/JFM/Axiomatics/tarski.html ). Unlike the ZFC axioms, this axiom is very long when expressed in terms of primitive symbols (see grothprim ). An open problem is finding a shorter equivalent. (Contributed by NM, 18-Mar-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ax-groth | |- E. y ( x e. y /\ A. z e. y ( A. w ( w C_ z -> w e. y ) /\ E. w e. y A. v ( v C_ z -> v e. w ) ) /\ A. z ( z C_ y -> ( z ~~ y \/ z e. y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | vy | |- y |
|
| 1 | vx | |- x |
|
| 2 | 1 | cv | |- x |
| 3 | 0 | cv | |- y |
| 4 | 2 3 | wcel | |- x e. y |
| 5 | vz | |- z |
|
| 6 | vw | |- w |
|
| 7 | 6 | cv | |- w |
| 8 | 5 | cv | |- z |
| 9 | 7 8 | wss | |- w C_ z |
| 10 | 7 3 | wcel | |- w e. y |
| 11 | 9 10 | wi | |- ( w C_ z -> w e. y ) |
| 12 | 11 6 | wal | |- A. w ( w C_ z -> w e. y ) |
| 13 | vv | |- v |
|
| 14 | 13 | cv | |- v |
| 15 | 14 8 | wss | |- v C_ z |
| 16 | 14 7 | wcel | |- v e. w |
| 17 | 15 16 | wi | |- ( v C_ z -> v e. w ) |
| 18 | 17 13 | wal | |- A. v ( v C_ z -> v e. w ) |
| 19 | 18 6 3 | wrex | |- E. w e. y A. v ( v C_ z -> v e. w ) |
| 20 | 12 19 | wa | |- ( A. w ( w C_ z -> w e. y ) /\ E. w e. y A. v ( v C_ z -> v e. w ) ) |
| 21 | 20 5 3 | wral | |- A. z e. y ( A. w ( w C_ z -> w e. y ) /\ E. w e. y A. v ( v C_ z -> v e. w ) ) |
| 22 | 8 3 | wss | |- z C_ y |
| 23 | cen | |- ~~ |
|
| 24 | 8 3 23 | wbr | |- z ~~ y |
| 25 | 8 3 | wcel | |- z e. y |
| 26 | 24 25 | wo | |- ( z ~~ y \/ z e. y ) |
| 27 | 22 26 | wi | |- ( z C_ y -> ( z ~~ y \/ z e. y ) ) |
| 28 | 27 5 | wal | |- A. z ( z C_ y -> ( z ~~ y \/ z e. y ) ) |
| 29 | 4 21 28 | w3a | |- ( x e. y /\ A. z e. y ( A. w ( w C_ z -> w e. y ) /\ E. w e. y A. v ( v C_ z -> v e. w ) ) /\ A. z ( z C_ y -> ( z ~~ y \/ z e. y ) ) ) |
| 30 | 29 0 | wex | |- E. y ( x e. y /\ A. z e. y ( A. w ( w C_ z -> w e. y ) /\ E. w e. y A. v ( v C_ z -> v e. w ) ) /\ A. z ( z C_ y -> ( z ~~ y \/ z e. y ) ) ) |