This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Hilbert lattice element covered by an atom must be the zero subspace. (Contributed by NM, 11-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | atcveq0 | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ) → ( 𝐴 ⋖ℋ 𝐵 ↔ 𝐴 = 0ℋ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atelch | ⊢ ( 𝐵 ∈ HAtoms → 𝐵 ∈ Cℋ ) | |
| 2 | cvpss | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ⋖ℋ 𝐵 → 𝐴 ⊊ 𝐵 ) ) | |
| 3 | 1 2 | sylan2 | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ) → ( 𝐴 ⋖ℋ 𝐵 → 𝐴 ⊊ 𝐵 ) ) |
| 4 | ch0le | ⊢ ( 𝐴 ∈ Cℋ → 0ℋ ⊆ 𝐴 ) | |
| 5 | 4 | adantr | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ) → 0ℋ ⊆ 𝐴 ) |
| 6 | 3 5 | jctild | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ) → ( 𝐴 ⋖ℋ 𝐵 → ( 0ℋ ⊆ 𝐴 ∧ 𝐴 ⊊ 𝐵 ) ) ) |
| 7 | atcv0 | ⊢ ( 𝐵 ∈ HAtoms → 0ℋ ⋖ℋ 𝐵 ) | |
| 8 | 7 | adantr | ⊢ ( ( 𝐵 ∈ HAtoms ∧ 𝐴 ∈ Cℋ ) → 0ℋ ⋖ℋ 𝐵 ) |
| 9 | h0elch | ⊢ 0ℋ ∈ Cℋ | |
| 10 | cvnbtwn3 | ⊢ ( ( 0ℋ ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) → ( 0ℋ ⋖ℋ 𝐵 → ( ( 0ℋ ⊆ 𝐴 ∧ 𝐴 ⊊ 𝐵 ) → 𝐴 = 0ℋ ) ) ) | |
| 11 | 9 10 | mp3an1 | ⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) → ( 0ℋ ⋖ℋ 𝐵 → ( ( 0ℋ ⊆ 𝐴 ∧ 𝐴 ⊊ 𝐵 ) → 𝐴 = 0ℋ ) ) ) |
| 12 | 1 11 | sylan | ⊢ ( ( 𝐵 ∈ HAtoms ∧ 𝐴 ∈ Cℋ ) → ( 0ℋ ⋖ℋ 𝐵 → ( ( 0ℋ ⊆ 𝐴 ∧ 𝐴 ⊊ 𝐵 ) → 𝐴 = 0ℋ ) ) ) |
| 13 | 8 12 | mpd | ⊢ ( ( 𝐵 ∈ HAtoms ∧ 𝐴 ∈ Cℋ ) → ( ( 0ℋ ⊆ 𝐴 ∧ 𝐴 ⊊ 𝐵 ) → 𝐴 = 0ℋ ) ) |
| 14 | 13 | ancoms | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ) → ( ( 0ℋ ⊆ 𝐴 ∧ 𝐴 ⊊ 𝐵 ) → 𝐴 = 0ℋ ) ) |
| 15 | 6 14 | syld | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ) → ( 𝐴 ⋖ℋ 𝐵 → 𝐴 = 0ℋ ) ) |
| 16 | breq1 | ⊢ ( 𝐴 = 0ℋ → ( 𝐴 ⋖ℋ 𝐵 ↔ 0ℋ ⋖ℋ 𝐵 ) ) | |
| 17 | 7 16 | syl5ibrcom | ⊢ ( 𝐵 ∈ HAtoms → ( 𝐴 = 0ℋ → 𝐴 ⋖ℋ 𝐵 ) ) |
| 18 | 17 | adantl | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ) → ( 𝐴 = 0ℋ → 𝐴 ⋖ℋ 𝐵 ) ) |
| 19 | 15 18 | impbid | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ) → ( 𝐴 ⋖ℋ 𝐵 ↔ 𝐴 = 0ℋ ) ) |