This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Domain and codomain of the arcsin function. (Contributed by Mario Carneiro, 31-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | asinf | |- arcsin : CC --> CC |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-asin | |- arcsin = ( x e. CC |-> ( -u _i x. ( log ` ( ( _i x. x ) + ( sqrt ` ( 1 - ( x ^ 2 ) ) ) ) ) ) ) |
|
| 2 | negicn | |- -u _i e. CC |
|
| 3 | ax-icn | |- _i e. CC |
|
| 4 | mulcl | |- ( ( _i e. CC /\ x e. CC ) -> ( _i x. x ) e. CC ) |
|
| 5 | 3 4 | mpan | |- ( x e. CC -> ( _i x. x ) e. CC ) |
| 6 | ax-1cn | |- 1 e. CC |
|
| 7 | sqcl | |- ( x e. CC -> ( x ^ 2 ) e. CC ) |
|
| 8 | subcl | |- ( ( 1 e. CC /\ ( x ^ 2 ) e. CC ) -> ( 1 - ( x ^ 2 ) ) e. CC ) |
|
| 9 | 6 7 8 | sylancr | |- ( x e. CC -> ( 1 - ( x ^ 2 ) ) e. CC ) |
| 10 | 9 | sqrtcld | |- ( x e. CC -> ( sqrt ` ( 1 - ( x ^ 2 ) ) ) e. CC ) |
| 11 | 5 10 | addcld | |- ( x e. CC -> ( ( _i x. x ) + ( sqrt ` ( 1 - ( x ^ 2 ) ) ) ) e. CC ) |
| 12 | asinlem | |- ( x e. CC -> ( ( _i x. x ) + ( sqrt ` ( 1 - ( x ^ 2 ) ) ) ) =/= 0 ) |
|
| 13 | 11 12 | logcld | |- ( x e. CC -> ( log ` ( ( _i x. x ) + ( sqrt ` ( 1 - ( x ^ 2 ) ) ) ) ) e. CC ) |
| 14 | mulcl | |- ( ( -u _i e. CC /\ ( log ` ( ( _i x. x ) + ( sqrt ` ( 1 - ( x ^ 2 ) ) ) ) ) e. CC ) -> ( -u _i x. ( log ` ( ( _i x. x ) + ( sqrt ` ( 1 - ( x ^ 2 ) ) ) ) ) ) e. CC ) |
|
| 15 | 2 13 14 | sylancr | |- ( x e. CC -> ( -u _i x. ( log ` ( ( _i x. x ) + ( sqrt ` ( 1 - ( x ^ 2 ) ) ) ) ) ) e. CC ) |
| 16 | 1 15 | fmpti | |- arcsin : CC --> CC |