This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiple commutations in conjunction. (Contributed by Peter Mazsa, 7-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | anan | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ∧ ( ( 𝜑 ∧ 𝜃 ) ∧ 𝜏 ) ) ↔ ( ( 𝜓 ∧ 𝜃 ) ∧ ( 𝜑 ∧ ( 𝜒 ∧ 𝜏 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an4 | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ∧ ( ( 𝜑 ∧ 𝜃 ) ∧ 𝜏 ) ) ↔ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝜑 ∧ 𝜃 ) ) ∧ ( 𝜒 ∧ 𝜏 ) ) ) | |
| 2 | anandi | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜃 ) ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝜑 ∧ 𝜃 ) ) ) | |
| 3 | ancom | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜃 ) ) ↔ ( ( 𝜓 ∧ 𝜃 ) ∧ 𝜑 ) ) | |
| 4 | 2 3 | bitr3i | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝜑 ∧ 𝜃 ) ) ↔ ( ( 𝜓 ∧ 𝜃 ) ∧ 𝜑 ) ) |
| 5 | 4 | anbi1i | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝜑 ∧ 𝜃 ) ) ∧ ( 𝜒 ∧ 𝜏 ) ) ↔ ( ( ( 𝜓 ∧ 𝜃 ) ∧ 𝜑 ) ∧ ( 𝜒 ∧ 𝜏 ) ) ) |
| 6 | anass | ⊢ ( ( ( ( 𝜓 ∧ 𝜃 ) ∧ 𝜑 ) ∧ ( 𝜒 ∧ 𝜏 ) ) ↔ ( ( 𝜓 ∧ 𝜃 ) ∧ ( 𝜑 ∧ ( 𝜒 ∧ 𝜏 ) ) ) ) | |
| 7 | 1 5 6 | 3bitri | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ∧ ( ( 𝜑 ∧ 𝜃 ) ∧ 𝜏 ) ) ↔ ( ( 𝜓 ∧ 𝜃 ) ∧ ( 𝜑 ∧ ( 𝜒 ∧ 𝜏 ) ) ) ) |