This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transfer universal quantification from a variable x to another variable y contained in expression A . (Contributed by NM, 18-Feb-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | alxfr.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| Assertion | alxfr | ⊢ ( ( ∀ 𝑦 𝐴 ∈ 𝐵 ∧ ∀ 𝑥 ∃ 𝑦 𝑥 = 𝐴 ) → ( ∀ 𝑥 𝜑 ↔ ∀ 𝑦 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alxfr.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | 1 | spcgv | ⊢ ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 𝜑 → 𝜓 ) ) |
| 3 | 2 | com12 | ⊢ ( ∀ 𝑥 𝜑 → ( 𝐴 ∈ 𝐵 → 𝜓 ) ) |
| 4 | 3 | alimdv | ⊢ ( ∀ 𝑥 𝜑 → ( ∀ 𝑦 𝐴 ∈ 𝐵 → ∀ 𝑦 𝜓 ) ) |
| 5 | 4 | com12 | ⊢ ( ∀ 𝑦 𝐴 ∈ 𝐵 → ( ∀ 𝑥 𝜑 → ∀ 𝑦 𝜓 ) ) |
| 6 | 5 | adantr | ⊢ ( ( ∀ 𝑦 𝐴 ∈ 𝐵 ∧ ∀ 𝑥 ∃ 𝑦 𝑥 = 𝐴 ) → ( ∀ 𝑥 𝜑 → ∀ 𝑦 𝜓 ) ) |
| 7 | nfa1 | ⊢ Ⅎ 𝑦 ∀ 𝑦 𝜓 | |
| 8 | nfv | ⊢ Ⅎ 𝑦 𝜑 | |
| 9 | sp | ⊢ ( ∀ 𝑦 𝜓 → 𝜓 ) | |
| 10 | 9 1 | syl5ibrcom | ⊢ ( ∀ 𝑦 𝜓 → ( 𝑥 = 𝐴 → 𝜑 ) ) |
| 11 | 7 8 10 | exlimd | ⊢ ( ∀ 𝑦 𝜓 → ( ∃ 𝑦 𝑥 = 𝐴 → 𝜑 ) ) |
| 12 | 11 | alimdv | ⊢ ( ∀ 𝑦 𝜓 → ( ∀ 𝑥 ∃ 𝑦 𝑥 = 𝐴 → ∀ 𝑥 𝜑 ) ) |
| 13 | 12 | com12 | ⊢ ( ∀ 𝑥 ∃ 𝑦 𝑥 = 𝐴 → ( ∀ 𝑦 𝜓 → ∀ 𝑥 𝜑 ) ) |
| 14 | 13 | adantl | ⊢ ( ( ∀ 𝑦 𝐴 ∈ 𝐵 ∧ ∀ 𝑥 ∃ 𝑦 𝑥 = 𝐴 ) → ( ∀ 𝑦 𝜓 → ∀ 𝑥 𝜑 ) ) |
| 15 | 6 14 | impbid | ⊢ ( ( ∀ 𝑦 𝐴 ∈ 𝐵 ∧ ∀ 𝑥 ∃ 𝑦 𝑥 = 𝐴 ) → ( ∀ 𝑥 𝜑 ↔ ∀ 𝑦 𝜓 ) ) |