This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence of an "at most one" and an "at most one" restricted to the domain inside a universal quantification. (Contributed by Peter Mazsa, 5-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alrmomodm | |- ( Rel R -> ( A. x E* u e. dom R u R x <-> A. x E* u u R x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rmo | |- ( E* u e. dom R u R x <-> E* u ( u e. dom R /\ u R x ) ) |
|
| 2 | brres | |- ( x e. _V -> ( u ( R |` dom R ) x <-> ( u e. dom R /\ u R x ) ) ) |
|
| 3 | 2 | elv | |- ( u ( R |` dom R ) x <-> ( u e. dom R /\ u R x ) ) |
| 4 | resdm | |- ( Rel R -> ( R |` dom R ) = R ) |
|
| 5 | 4 | breqd | |- ( Rel R -> ( u ( R |` dom R ) x <-> u R x ) ) |
| 6 | 3 5 | bitr3id | |- ( Rel R -> ( ( u e. dom R /\ u R x ) <-> u R x ) ) |
| 7 | 6 | mobidv | |- ( Rel R -> ( E* u ( u e. dom R /\ u R x ) <-> E* u u R x ) ) |
| 8 | 1 7 | bitrid | |- ( Rel R -> ( E* u e. dom R u R x <-> E* u u R x ) ) |
| 9 | 8 | albidv | |- ( Rel R -> ( A. x E* u e. dom R u R x <-> A. x E* u u R x ) ) |