This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express substitution of A for x in ph . This is the analogue for classes of sbalex . (Contributed by NM, 2-Mar-1995) (Revised by BJ, 27-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alexeqg | |- ( A e. V -> ( A. x ( x = A -> ph ) <-> E. x ( x = A /\ ph ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 | |- ( y = A -> ( x = y <-> x = A ) ) |
|
| 2 | 1 | anbi1d | |- ( y = A -> ( ( x = y /\ ph ) <-> ( x = A /\ ph ) ) ) |
| 3 | 2 | exbidv | |- ( y = A -> ( E. x ( x = y /\ ph ) <-> E. x ( x = A /\ ph ) ) ) |
| 4 | 1 | imbi1d | |- ( y = A -> ( ( x = y -> ph ) <-> ( x = A -> ph ) ) ) |
| 5 | 4 | albidv | |- ( y = A -> ( A. x ( x = y -> ph ) <-> A. x ( x = A -> ph ) ) ) |
| 6 | sbalex | |- ( E. x ( x = y /\ ph ) <-> A. x ( x = y -> ph ) ) |
|
| 7 | 3 5 6 | vtoclbg | |- ( A e. V -> ( E. x ( x = A /\ ph ) <-> A. x ( x = A -> ph ) ) ) |
| 8 | 7 | bicomd | |- ( A e. V -> ( A. x ( x = A -> ph ) <-> E. x ( x = A /\ ph ) ) ) |