This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the adjoint function. (Contributed by NM, 19-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | adjval2 | ⊢ ( 𝑇 ∈ dom adjℎ → ( adjℎ ‘ 𝑇 ) = ( ℩ 𝑢 ∈ ( ℋ ↑m ℋ ) ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑢 ‘ 𝑦 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | adjval | ⊢ ( 𝑇 ∈ dom adjℎ → ( adjℎ ‘ 𝑇 ) = ( ℩ 𝑢 ∈ ( ℋ ↑m ℋ ) ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑢 ‘ 𝑥 ) ·ih 𝑦 ) ) ) | |
| 2 | dmadjop | ⊢ ( 𝑇 ∈ dom adjℎ → 𝑇 : ℋ ⟶ ℋ ) | |
| 3 | elmapi | ⊢ ( 𝑢 ∈ ( ℋ ↑m ℋ ) → 𝑢 : ℋ ⟶ ℋ ) | |
| 4 | adjsym | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑢 : ℋ ⟶ ℋ ) → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑢 ‘ 𝑥 ) ·ih 𝑦 ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑢 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ) ) | |
| 5 | eqcom | ⊢ ( ( 𝑥 ·ih ( 𝑢 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ↔ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑢 ‘ 𝑦 ) ) ) | |
| 6 | 5 | 2ralbii | ⊢ ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑢 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑢 ‘ 𝑦 ) ) ) |
| 7 | 4 6 | bitrdi | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑢 : ℋ ⟶ ℋ ) → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑢 ‘ 𝑥 ) ·ih 𝑦 ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑢 ‘ 𝑦 ) ) ) ) |
| 8 | 2 3 7 | syl2an | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝑢 ∈ ( ℋ ↑m ℋ ) ) → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑢 ‘ 𝑥 ) ·ih 𝑦 ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑢 ‘ 𝑦 ) ) ) ) |
| 9 | 8 | riotabidva | ⊢ ( 𝑇 ∈ dom adjℎ → ( ℩ 𝑢 ∈ ( ℋ ↑m ℋ ) ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑢 ‘ 𝑥 ) ·ih 𝑦 ) ) = ( ℩ 𝑢 ∈ ( ℋ ↑m ℋ ) ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑢 ‘ 𝑦 ) ) ) ) |
| 10 | 1 9 | eqtrd | ⊢ ( 𝑇 ∈ dom adjℎ → ( adjℎ ‘ 𝑇 ) = ( ℩ 𝑢 ∈ ( ℋ ↑m ℋ ) ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑢 ‘ 𝑦 ) ) ) ) |