This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Half of an integer greater than 1 is less than or equal to the integer minus 1. (Contributed by AV, 1-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ge2halflem1 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 / 2 ) ≤ ( 𝑁 − 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re | ⊢ 2 ∈ ℝ | |
| 2 | 1 | a1i | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 2 ∈ ℝ ) |
| 3 | eluzelre | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 𝑁 ∈ ℝ ) | |
| 4 | 2 3 | remulcld | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 2 · 𝑁 ) ∈ ℝ ) |
| 5 | eluzle | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 2 ≤ 𝑁 ) | |
| 6 | 2m1e1 | ⊢ ( 2 − 1 ) = 1 | |
| 7 | 6 | a1i | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 2 − 1 ) = 1 ) |
| 8 | 7 | oveq1d | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( ( 2 − 1 ) · 𝑁 ) = ( 1 · 𝑁 ) ) |
| 9 | eluzelcn | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 𝑁 ∈ ℂ ) | |
| 10 | 9 | mullidd | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 1 · 𝑁 ) = 𝑁 ) |
| 11 | 8 10 | eqtrd | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( ( 2 − 1 ) · 𝑁 ) = 𝑁 ) |
| 12 | 5 11 | breqtrrd | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 2 ≤ ( ( 2 − 1 ) · 𝑁 ) ) |
| 13 | 2cnd | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 2 ∈ ℂ ) | |
| 14 | 13 9 | mulsubfacd | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( ( 2 · 𝑁 ) − 𝑁 ) = ( ( 2 − 1 ) · 𝑁 ) ) |
| 15 | 12 14 | breqtrrd | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 2 ≤ ( ( 2 · 𝑁 ) − 𝑁 ) ) |
| 16 | 2 4 3 15 | lesubd | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 𝑁 ≤ ( ( 2 · 𝑁 ) − 2 ) ) |
| 17 | 13 9 | muls1d | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 2 · ( 𝑁 − 1 ) ) = ( ( 2 · 𝑁 ) − 2 ) ) |
| 18 | 16 17 | breqtrrd | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 𝑁 ≤ ( 2 · ( 𝑁 − 1 ) ) ) |
| 19 | 1red | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 1 ∈ ℝ ) | |
| 20 | 3 19 | resubcld | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 − 1 ) ∈ ℝ ) |
| 21 | 2rp | ⊢ 2 ∈ ℝ+ | |
| 22 | 21 | a1i | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 2 ∈ ℝ+ ) |
| 23 | 3 20 22 | ledivmuld | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝑁 / 2 ) ≤ ( 𝑁 − 1 ) ↔ 𝑁 ≤ ( 2 · ( 𝑁 − 1 ) ) ) ) |
| 24 | 18 23 | mpbird | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 / 2 ) ≤ ( 𝑁 − 1 ) ) |