This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rearrangement of 4 terms in a sum. (Contributed by NM, 12-May-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | add42 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = ( ( 𝐴 + 𝐶 ) + ( 𝐷 + 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | add4 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = ( ( 𝐴 + 𝐶 ) + ( 𝐵 + 𝐷 ) ) ) | |
| 2 | addcom | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( 𝐵 + 𝐷 ) = ( 𝐷 + 𝐵 ) ) | |
| 3 | 2 | ad2ant2l | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( 𝐵 + 𝐷 ) = ( 𝐷 + 𝐵 ) ) |
| 4 | 3 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 + 𝐶 ) + ( 𝐵 + 𝐷 ) ) = ( ( 𝐴 + 𝐶 ) + ( 𝐷 + 𝐵 ) ) ) |
| 5 | 1 4 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = ( ( 𝐴 + 𝐶 ) + ( 𝐷 + 𝐵 ) ) ) |