This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Square of absolute value of sum. Proposition 10-3.7(g) of Gleason p. 133. (Contributed by NM, 2-Oct-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | absvalsqi.1 | ⊢ 𝐴 ∈ ℂ | |
| abssub.2 | ⊢ 𝐵 ∈ ℂ | ||
| Assertion | sqabsaddi | ⊢ ( ( abs ‘ ( 𝐴 + 𝐵 ) ) ↑ 2 ) = ( ( ( ( abs ‘ 𝐴 ) ↑ 2 ) + ( ( abs ‘ 𝐵 ) ↑ 2 ) ) + ( 2 · ( ℜ ‘ ( 𝐴 · ( ∗ ‘ 𝐵 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | absvalsqi.1 | ⊢ 𝐴 ∈ ℂ | |
| 2 | abssub.2 | ⊢ 𝐵 ∈ ℂ | |
| 3 | sqabsadd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( abs ‘ ( 𝐴 + 𝐵 ) ) ↑ 2 ) = ( ( ( ( abs ‘ 𝐴 ) ↑ 2 ) + ( ( abs ‘ 𝐵 ) ↑ 2 ) ) + ( 2 · ( ℜ ‘ ( 𝐴 · ( ∗ ‘ 𝐵 ) ) ) ) ) ) | |
| 4 | 1 2 3 | mp2an | ⊢ ( ( abs ‘ ( 𝐴 + 𝐵 ) ) ↑ 2 ) = ( ( ( ( abs ‘ 𝐴 ) ↑ 2 ) + ( ( abs ‘ 𝐵 ) ↑ 2 ) ) + ( 2 · ( ℜ ‘ ( 𝐴 · ( ∗ ‘ 𝐵 ) ) ) ) ) |