This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A is divisible by B iff its absolute value is. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | absmod0 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐴 mod 𝐵 ) = 0 ↔ ( ( abs ‘ 𝐴 ) mod 𝐵 ) = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | ⊢ ( 𝐴 = ( abs ‘ 𝐴 ) → ( 𝐴 mod 𝐵 ) = ( ( abs ‘ 𝐴 ) mod 𝐵 ) ) | |
| 2 | 1 | eqcoms | ⊢ ( ( abs ‘ 𝐴 ) = 𝐴 → ( 𝐴 mod 𝐵 ) = ( ( abs ‘ 𝐴 ) mod 𝐵 ) ) |
| 3 | 2 | eqeq1d | ⊢ ( ( abs ‘ 𝐴 ) = 𝐴 → ( ( 𝐴 mod 𝐵 ) = 0 ↔ ( ( abs ‘ 𝐴 ) mod 𝐵 ) = 0 ) ) |
| 4 | 3 | a1i | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( abs ‘ 𝐴 ) = 𝐴 → ( ( 𝐴 mod 𝐵 ) = 0 ↔ ( ( abs ‘ 𝐴 ) mod 𝐵 ) = 0 ) ) ) |
| 5 | negmod0 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐴 mod 𝐵 ) = 0 ↔ ( - 𝐴 mod 𝐵 ) = 0 ) ) | |
| 6 | oveq1 | ⊢ ( ( abs ‘ 𝐴 ) = - 𝐴 → ( ( abs ‘ 𝐴 ) mod 𝐵 ) = ( - 𝐴 mod 𝐵 ) ) | |
| 7 | 6 | eqeq1d | ⊢ ( ( abs ‘ 𝐴 ) = - 𝐴 → ( ( ( abs ‘ 𝐴 ) mod 𝐵 ) = 0 ↔ ( - 𝐴 mod 𝐵 ) = 0 ) ) |
| 8 | 7 | bibi2d | ⊢ ( ( abs ‘ 𝐴 ) = - 𝐴 → ( ( ( 𝐴 mod 𝐵 ) = 0 ↔ ( ( abs ‘ 𝐴 ) mod 𝐵 ) = 0 ) ↔ ( ( 𝐴 mod 𝐵 ) = 0 ↔ ( - 𝐴 mod 𝐵 ) = 0 ) ) ) |
| 9 | 5 8 | syl5ibrcom | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( abs ‘ 𝐴 ) = - 𝐴 → ( ( 𝐴 mod 𝐵 ) = 0 ↔ ( ( abs ‘ 𝐴 ) mod 𝐵 ) = 0 ) ) ) |
| 10 | absor | ⊢ ( 𝐴 ∈ ℝ → ( ( abs ‘ 𝐴 ) = 𝐴 ∨ ( abs ‘ 𝐴 ) = - 𝐴 ) ) | |
| 11 | 10 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( abs ‘ 𝐴 ) = 𝐴 ∨ ( abs ‘ 𝐴 ) = - 𝐴 ) ) |
| 12 | 4 9 11 | mpjaod | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐴 mod 𝐵 ) = 0 ↔ ( ( abs ‘ 𝐴 ) mod 𝐵 ) = 0 ) ) |