This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sufficient condition for a class abstraction to be a proper class. Lemma for snnex and pwnex . See the comment of abnexg . (Contributed by BJ, 2-May-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | abnex | ⊢ ( ∀ 𝑥 ( 𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹 ) → ¬ { 𝑦 ∣ ∃ 𝑥 𝑦 = 𝐹 } ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vprc | ⊢ ¬ V ∈ V | |
| 2 | alral | ⊢ ( ∀ 𝑥 ( 𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹 ) → ∀ 𝑥 ∈ V ( 𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹 ) ) | |
| 3 | rexv | ⊢ ( ∃ 𝑥 ∈ V 𝑦 = 𝐹 ↔ ∃ 𝑥 𝑦 = 𝐹 ) | |
| 4 | 3 | bicomi | ⊢ ( ∃ 𝑥 𝑦 = 𝐹 ↔ ∃ 𝑥 ∈ V 𝑦 = 𝐹 ) |
| 5 | 4 | abbii | ⊢ { 𝑦 ∣ ∃ 𝑥 𝑦 = 𝐹 } = { 𝑦 ∣ ∃ 𝑥 ∈ V 𝑦 = 𝐹 } |
| 6 | 5 | eleq1i | ⊢ ( { 𝑦 ∣ ∃ 𝑥 𝑦 = 𝐹 } ∈ V ↔ { 𝑦 ∣ ∃ 𝑥 ∈ V 𝑦 = 𝐹 } ∈ V ) |
| 7 | 6 | biimpi | ⊢ ( { 𝑦 ∣ ∃ 𝑥 𝑦 = 𝐹 } ∈ V → { 𝑦 ∣ ∃ 𝑥 ∈ V 𝑦 = 𝐹 } ∈ V ) |
| 8 | abnexg | ⊢ ( ∀ 𝑥 ∈ V ( 𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹 ) → ( { 𝑦 ∣ ∃ 𝑥 ∈ V 𝑦 = 𝐹 } ∈ V → V ∈ V ) ) | |
| 9 | 2 7 8 | syl2im | ⊢ ( ∀ 𝑥 ( 𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹 ) → ( { 𝑦 ∣ ∃ 𝑥 𝑦 = 𝐹 } ∈ V → V ∈ V ) ) |
| 10 | 1 9 | mtoi | ⊢ ( ∀ 𝑥 ( 𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹 ) → ¬ { 𝑦 ∣ ∃ 𝑥 𝑦 = 𝐹 } ∈ V ) |