This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of abid2f as of 26-Feb-2025. (Contributed by NM, 5-Sep-2011) (Revised by Mario Carneiro, 7-Oct-2016) (Proof shortened by Wolf Lammen, 17-Nov-2019) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | abid2f.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| Assertion | abid2fOLD | ⊢ { 𝑥 ∣ 𝑥 ∈ 𝐴 } = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abid2f.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| 2 | nfab1 | ⊢ Ⅎ 𝑥 { 𝑥 ∣ 𝑥 ∈ 𝐴 } | |
| 3 | 2 1 | cleqf | ⊢ ( { 𝑥 ∣ 𝑥 ∈ 𝐴 } = 𝐴 ↔ ∀ 𝑥 ( 𝑥 ∈ { 𝑥 ∣ 𝑥 ∈ 𝐴 } ↔ 𝑥 ∈ 𝐴 ) ) |
| 4 | abid | ⊢ ( 𝑥 ∈ { 𝑥 ∣ 𝑥 ∈ 𝐴 } ↔ 𝑥 ∈ 𝐴 ) | |
| 5 | 3 4 | mpgbir | ⊢ { 𝑥 ∣ 𝑥 ∈ 𝐴 } = 𝐴 |