This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An equivalence of two four-terms conjunctions with the terms regrouped (here, the second sub-conjunct of the first term is pulled separately). (Contributed by Zhi Wang, 4-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 4anpull2 | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝜒 ∧ 𝜃 ) ) ↔ ( ( 𝜑 ∧ 𝜒 ∧ 𝜃 ) ∧ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anass | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝜒 ∧ 𝜃 ) ) ↔ ( 𝜑 ∧ ( 𝜓 ∧ ( 𝜒 ∧ 𝜃 ) ) ) ) | |
| 2 | anass | ⊢ ( ( ( 𝜑 ∧ ( 𝜒 ∧ 𝜃 ) ) ∧ 𝜓 ) ↔ ( 𝜑 ∧ ( ( 𝜒 ∧ 𝜃 ) ∧ 𝜓 ) ) ) | |
| 3 | 3anass | ⊢ ( ( 𝜑 ∧ 𝜒 ∧ 𝜃 ) ↔ ( 𝜑 ∧ ( 𝜒 ∧ 𝜃 ) ) ) | |
| 4 | 3 | anbi1i | ⊢ ( ( ( 𝜑 ∧ 𝜒 ∧ 𝜃 ) ∧ 𝜓 ) ↔ ( ( 𝜑 ∧ ( 𝜒 ∧ 𝜃 ) ) ∧ 𝜓 ) ) |
| 5 | ancom | ⊢ ( ( 𝜓 ∧ ( 𝜒 ∧ 𝜃 ) ) ↔ ( ( 𝜒 ∧ 𝜃 ) ∧ 𝜓 ) ) | |
| 6 | 5 | anbi2i | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ ( 𝜒 ∧ 𝜃 ) ) ) ↔ ( 𝜑 ∧ ( ( 𝜒 ∧ 𝜃 ) ∧ 𝜓 ) ) ) |
| 7 | 2 4 6 | 3bitr4ri | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ ( 𝜒 ∧ 𝜃 ) ) ) ↔ ( ( 𝜑 ∧ 𝜒 ∧ 𝜃 ) ∧ 𝜓 ) ) |
| 8 | 1 7 | bitri | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝜒 ∧ 𝜃 ) ) ↔ ( ( 𝜑 ∧ 𝜒 ∧ 𝜃 ) ∧ 𝜓 ) ) |