This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An equivalence of two four-terms conjunctions with the terms regrouped (here, the second sub-conjunct of the first term is pulled separately). (Contributed by Zhi Wang, 4-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 4anpull2 | |- ( ( ( ph /\ ps ) /\ ( ch /\ th ) ) <-> ( ( ph /\ ch /\ th ) /\ ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anass | |- ( ( ( ph /\ ps ) /\ ( ch /\ th ) ) <-> ( ph /\ ( ps /\ ( ch /\ th ) ) ) ) |
|
| 2 | anass | |- ( ( ( ph /\ ( ch /\ th ) ) /\ ps ) <-> ( ph /\ ( ( ch /\ th ) /\ ps ) ) ) |
|
| 3 | 3anass | |- ( ( ph /\ ch /\ th ) <-> ( ph /\ ( ch /\ th ) ) ) |
|
| 4 | 3 | anbi1i | |- ( ( ( ph /\ ch /\ th ) /\ ps ) <-> ( ( ph /\ ( ch /\ th ) ) /\ ps ) ) |
| 5 | ancom | |- ( ( ps /\ ( ch /\ th ) ) <-> ( ( ch /\ th ) /\ ps ) ) |
|
| 6 | 5 | anbi2i | |- ( ( ph /\ ( ps /\ ( ch /\ th ) ) ) <-> ( ph /\ ( ( ch /\ th ) /\ ps ) ) ) |
| 7 | 2 4 6 | 3bitr4ri | |- ( ( ph /\ ( ps /\ ( ch /\ th ) ) ) <-> ( ( ph /\ ch /\ th ) /\ ps ) ) |
| 8 | 1 7 | bitri | |- ( ( ( ph /\ ps ) /\ ( ch /\ th ) ) <-> ( ( ph /\ ch /\ th ) /\ ps ) ) |