This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Analogue of or4 for triple conjunction. (Contributed by Scott Fenton, 16-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 3or6 | ⊢ ( ( ( 𝜑 ∨ 𝜓 ) ∨ ( 𝜒 ∨ 𝜃 ) ∨ ( 𝜏 ∨ 𝜂 ) ) ↔ ( ( 𝜑 ∨ 𝜒 ∨ 𝜏 ) ∨ ( 𝜓 ∨ 𝜃 ∨ 𝜂 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | or4 | ⊢ ( ( ( ( 𝜑 ∨ 𝜒 ) ∨ 𝜏 ) ∨ ( ( 𝜓 ∨ 𝜃 ) ∨ 𝜂 ) ) ↔ ( ( ( 𝜑 ∨ 𝜒 ) ∨ ( 𝜓 ∨ 𝜃 ) ) ∨ ( 𝜏 ∨ 𝜂 ) ) ) | |
| 2 | or4 | ⊢ ( ( ( 𝜑 ∨ 𝜒 ) ∨ ( 𝜓 ∨ 𝜃 ) ) ↔ ( ( 𝜑 ∨ 𝜓 ) ∨ ( 𝜒 ∨ 𝜃 ) ) ) | |
| 3 | 2 | orbi1i | ⊢ ( ( ( ( 𝜑 ∨ 𝜒 ) ∨ ( 𝜓 ∨ 𝜃 ) ) ∨ ( 𝜏 ∨ 𝜂 ) ) ↔ ( ( ( 𝜑 ∨ 𝜓 ) ∨ ( 𝜒 ∨ 𝜃 ) ) ∨ ( 𝜏 ∨ 𝜂 ) ) ) |
| 4 | 1 3 | bitr2i | ⊢ ( ( ( ( 𝜑 ∨ 𝜓 ) ∨ ( 𝜒 ∨ 𝜃 ) ) ∨ ( 𝜏 ∨ 𝜂 ) ) ↔ ( ( ( 𝜑 ∨ 𝜒 ) ∨ 𝜏 ) ∨ ( ( 𝜓 ∨ 𝜃 ) ∨ 𝜂 ) ) ) |
| 5 | df-3or | ⊢ ( ( ( 𝜑 ∨ 𝜓 ) ∨ ( 𝜒 ∨ 𝜃 ) ∨ ( 𝜏 ∨ 𝜂 ) ) ↔ ( ( ( 𝜑 ∨ 𝜓 ) ∨ ( 𝜒 ∨ 𝜃 ) ) ∨ ( 𝜏 ∨ 𝜂 ) ) ) | |
| 6 | df-3or | ⊢ ( ( 𝜑 ∨ 𝜒 ∨ 𝜏 ) ↔ ( ( 𝜑 ∨ 𝜒 ) ∨ 𝜏 ) ) | |
| 7 | df-3or | ⊢ ( ( 𝜓 ∨ 𝜃 ∨ 𝜂 ) ↔ ( ( 𝜓 ∨ 𝜃 ) ∨ 𝜂 ) ) | |
| 8 | 6 7 | orbi12i | ⊢ ( ( ( 𝜑 ∨ 𝜒 ∨ 𝜏 ) ∨ ( 𝜓 ∨ 𝜃 ∨ 𝜂 ) ) ↔ ( ( ( 𝜑 ∨ 𝜒 ) ∨ 𝜏 ) ∨ ( ( 𝜓 ∨ 𝜃 ) ∨ 𝜂 ) ) ) |
| 9 | 4 5 8 | 3bitr4i | ⊢ ( ( ( 𝜑 ∨ 𝜓 ) ∨ ( 𝜒 ∨ 𝜃 ) ∨ ( 𝜏 ∨ 𝜂 ) ) ↔ ( ( 𝜑 ∨ 𝜒 ∨ 𝜏 ) ∨ ( 𝜓 ∨ 𝜃 ∨ 𝜂 ) ) ) |