This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Analogue of or4 for triple conjunction. (Contributed by Scott Fenton, 16-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 3or6 | |- ( ( ( ph \/ ps ) \/ ( ch \/ th ) \/ ( ta \/ et ) ) <-> ( ( ph \/ ch \/ ta ) \/ ( ps \/ th \/ et ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | or4 | |- ( ( ( ( ph \/ ch ) \/ ta ) \/ ( ( ps \/ th ) \/ et ) ) <-> ( ( ( ph \/ ch ) \/ ( ps \/ th ) ) \/ ( ta \/ et ) ) ) |
|
| 2 | or4 | |- ( ( ( ph \/ ch ) \/ ( ps \/ th ) ) <-> ( ( ph \/ ps ) \/ ( ch \/ th ) ) ) |
|
| 3 | 2 | orbi1i | |- ( ( ( ( ph \/ ch ) \/ ( ps \/ th ) ) \/ ( ta \/ et ) ) <-> ( ( ( ph \/ ps ) \/ ( ch \/ th ) ) \/ ( ta \/ et ) ) ) |
| 4 | 1 3 | bitr2i | |- ( ( ( ( ph \/ ps ) \/ ( ch \/ th ) ) \/ ( ta \/ et ) ) <-> ( ( ( ph \/ ch ) \/ ta ) \/ ( ( ps \/ th ) \/ et ) ) ) |
| 5 | df-3or | |- ( ( ( ph \/ ps ) \/ ( ch \/ th ) \/ ( ta \/ et ) ) <-> ( ( ( ph \/ ps ) \/ ( ch \/ th ) ) \/ ( ta \/ et ) ) ) |
|
| 6 | df-3or | |- ( ( ph \/ ch \/ ta ) <-> ( ( ph \/ ch ) \/ ta ) ) |
|
| 7 | df-3or | |- ( ( ps \/ th \/ et ) <-> ( ( ps \/ th ) \/ et ) ) |
|
| 8 | 6 7 | orbi12i | |- ( ( ( ph \/ ch \/ ta ) \/ ( ps \/ th \/ et ) ) <-> ( ( ( ph \/ ch ) \/ ta ) \/ ( ( ps \/ th ) \/ et ) ) ) |
| 9 | 4 5 8 | 3bitr4i | |- ( ( ( ph \/ ps ) \/ ( ch \/ th ) \/ ( ta \/ et ) ) <-> ( ( ph \/ ch \/ ta ) \/ ( ps \/ th \/ et ) ) ) |