This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Double restricted existential uniqueness in terms of restricted existence and restricted "at most one". (Contributed by Alexander van der Vekens, 17-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2reu5a | ⊢ ( ∃! 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝜑 ↔ ( ∃ 𝑥 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃* 𝑦 ∈ 𝐵 𝜑 ) ∧ ∃* 𝑥 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃* 𝑦 ∈ 𝐵 𝜑 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reu5 | ⊢ ( ∃! 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝜑 ↔ ( ∃ 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝜑 ∧ ∃* 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝜑 ) ) | |
| 2 | reu5 | ⊢ ( ∃! 𝑦 ∈ 𝐵 𝜑 ↔ ( ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃* 𝑦 ∈ 𝐵 𝜑 ) ) | |
| 3 | 2 | rexbii | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝜑 ↔ ∃ 𝑥 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃* 𝑦 ∈ 𝐵 𝜑 ) ) |
| 4 | 2 | rmobii | ⊢ ( ∃* 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝜑 ↔ ∃* 𝑥 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃* 𝑦 ∈ 𝐵 𝜑 ) ) |
| 5 | 3 4 | anbi12i | ⊢ ( ( ∃ 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝜑 ∧ ∃* 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝜑 ) ↔ ( ∃ 𝑥 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃* 𝑦 ∈ 𝐵 𝜑 ) ∧ ∃* 𝑥 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃* 𝑦 ∈ 𝐵 𝜑 ) ) ) |
| 6 | 1 5 | bitri | ⊢ ( ∃! 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝜑 ↔ ( ∃ 𝑥 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃* 𝑦 ∈ 𝐵 𝜑 ) ∧ ∃* 𝑥 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃* 𝑦 ∈ 𝐵 𝜑 ) ) ) |