This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Double restricted existential uniqueness, analogous to 2eu2 . (Contributed by Alexander van der Vekens, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2reu2 | ⊢ ( ∃! 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 → ( ∃! 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝜑 ↔ ∃! 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reurmo | ⊢ ( ∃! 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 → ∃* 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ) | |
| 2 | 2rmorex | ⊢ ( ∃* 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 → ∀ 𝑥 ∈ 𝐴 ∃* 𝑦 ∈ 𝐵 𝜑 ) | |
| 3 | 2reu1 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃* 𝑦 ∈ 𝐵 𝜑 → ( ∃! 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝜑 ↔ ( ∃! 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃! 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ) ) ) | |
| 4 | simpl | ⊢ ( ( ∃! 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃! 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ) → ∃! 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) | |
| 5 | 3 4 | biimtrdi | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃* 𝑦 ∈ 𝐵 𝜑 → ( ∃! 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝜑 → ∃! 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) ) |
| 6 | 1 2 5 | 3syl | ⊢ ( ∃! 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 → ( ∃! 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝜑 → ∃! 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) ) |
| 7 | 2rexreu | ⊢ ( ( ∃! 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃! 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ) → ∃! 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝜑 ) | |
| 8 | 7 | expcom | ⊢ ( ∃! 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 → ( ∃! 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 → ∃! 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝜑 ) ) |
| 9 | 6 8 | impbid | ⊢ ( ∃! 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 → ( ∃! 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝜑 ↔ ∃! 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) ) |