This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties of a pair in a restricted binary relation M expressed as an ordered-pair class abstraction: M is the binary relation W restricted by the conditions ps and ta . (Contributed by AV, 31-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 2rbropap.1 | ⊢ ( 𝜑 → 𝑀 = { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 𝑊 𝑝 ∧ 𝜓 ∧ 𝜏 ) } ) | |
| 2rbropap.2 | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → ( 𝜓 ↔ 𝜒 ) ) | ||
| 2rbropap.3 | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → ( 𝜏 ↔ 𝜃 ) ) | ||
| Assertion | 2rbropap | ⊢ ( ( 𝜑 ∧ 𝐹 ∈ 𝑋 ∧ 𝑃 ∈ 𝑌 ) → ( 𝐹 𝑀 𝑃 ↔ ( 𝐹 𝑊 𝑃 ∧ 𝜒 ∧ 𝜃 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2rbropap.1 | ⊢ ( 𝜑 → 𝑀 = { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 𝑊 𝑝 ∧ 𝜓 ∧ 𝜏 ) } ) | |
| 2 | 2rbropap.2 | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → ( 𝜓 ↔ 𝜒 ) ) | |
| 3 | 2rbropap.3 | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → ( 𝜏 ↔ 𝜃 ) ) | |
| 4 | 3anass | ⊢ ( ( 𝑓 𝑊 𝑝 ∧ 𝜓 ∧ 𝜏 ) ↔ ( 𝑓 𝑊 𝑝 ∧ ( 𝜓 ∧ 𝜏 ) ) ) | |
| 5 | 4 | opabbii | ⊢ { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 𝑊 𝑝 ∧ 𝜓 ∧ 𝜏 ) } = { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 𝑊 𝑝 ∧ ( 𝜓 ∧ 𝜏 ) ) } |
| 6 | 1 5 | eqtrdi | ⊢ ( 𝜑 → 𝑀 = { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 𝑊 𝑝 ∧ ( 𝜓 ∧ 𝜏 ) ) } ) |
| 7 | 2 3 | anbi12d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → ( ( 𝜓 ∧ 𝜏 ) ↔ ( 𝜒 ∧ 𝜃 ) ) ) |
| 8 | 6 7 | rbropap | ⊢ ( ( 𝜑 ∧ 𝐹 ∈ 𝑋 ∧ 𝑃 ∈ 𝑌 ) → ( 𝐹 𝑀 𝑃 ↔ ( 𝐹 𝑊 𝑃 ∧ ( 𝜒 ∧ 𝜃 ) ) ) ) |
| 9 | 3anass | ⊢ ( ( 𝐹 𝑊 𝑃 ∧ 𝜒 ∧ 𝜃 ) ↔ ( 𝐹 𝑊 𝑃 ∧ ( 𝜒 ∧ 𝜃 ) ) ) | |
| 10 | 8 9 | bitr4di | ⊢ ( ( 𝜑 ∧ 𝐹 ∈ 𝑋 ∧ 𝑃 ∈ 𝑌 ) → ( 𝐹 𝑀 𝑃 ↔ ( 𝐹 𝑊 𝑃 ∧ 𝜒 ∧ 𝜃 ) ) ) |