This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A condition allowing to swap an existential quantifier and at at-most-one quantifier. Version of 2moswap with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 10-Apr-2004) (Revised by GG, 22-Aug-2023) Factor out common proof lines with moexexvw . (Revised by Wolf Lammen, 2-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2moswapv | |- ( A. x E* y ph -> ( E* x E. y ph -> E* y E. x ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfe1 | |- F/ y E. y ph |
|
| 2 | 1 | nfmov | |- F/ y E* x E. y ph |
| 3 | nfe1 | |- F/ x E. x ( E. y ph /\ ph ) |
|
| 4 | 3 | nfmov | |- F/ x E* y E. x ( E. y ph /\ ph ) |
| 5 | 1 2 4 | moexexlem | |- ( ( E* x E. y ph /\ A. x E* y ph ) -> E* y E. x ( E. y ph /\ ph ) ) |
| 6 | 5 | expcom | |- ( A. x E* y ph -> ( E* x E. y ph -> E* y E. x ( E. y ph /\ ph ) ) ) |
| 7 | 19.8a | |- ( ph -> E. y ph ) |
|
| 8 | 7 | pm4.71ri | |- ( ph <-> ( E. y ph /\ ph ) ) |
| 9 | 8 | exbii | |- ( E. x ph <-> E. x ( E. y ph /\ ph ) ) |
| 10 | 9 | mobii | |- ( E* y E. x ph <-> E* y E. x ( E. y ph /\ ph ) ) |
| 11 | 6 10 | imbitrrdi | |- ( A. x E* y ph -> ( E* x E. y ph -> E* y E. x ph ) ) |