This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A two-sided ideal is a subset of the base set. Formerly part of proof for 2idlcpbl . (Contributed by Mario Carneiro, 14-Jun-2015) (Revised by AV, 20-Feb-2025) (Proof shortened by AV, 13-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 2idlss.b | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | |
| 2idlss.i | ⊢ 𝐼 = ( 2Ideal ‘ 𝑊 ) | ||
| Assertion | 2idlss | ⊢ ( 𝑈 ∈ 𝐼 → 𝑈 ⊆ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2idlss.b | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | |
| 2 | 2idlss.i | ⊢ 𝐼 = ( 2Ideal ‘ 𝑊 ) | |
| 3 | 2 | eleq2i | ⊢ ( 𝑈 ∈ 𝐼 ↔ 𝑈 ∈ ( 2Ideal ‘ 𝑊 ) ) |
| 4 | 3 | biimpi | ⊢ ( 𝑈 ∈ 𝐼 → 𝑈 ∈ ( 2Ideal ‘ 𝑊 ) ) |
| 5 | 4 | 2idllidld | ⊢ ( 𝑈 ∈ 𝐼 → 𝑈 ∈ ( LIdeal ‘ 𝑊 ) ) |
| 6 | eqid | ⊢ ( LIdeal ‘ 𝑊 ) = ( LIdeal ‘ 𝑊 ) | |
| 7 | 1 6 | lidlss | ⊢ ( 𝑈 ∈ ( LIdeal ‘ 𝑊 ) → 𝑈 ⊆ 𝐵 ) |
| 8 | 5 7 | syl | ⊢ ( 𝑈 ∈ 𝐼 → 𝑈 ⊆ 𝐵 ) |