This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC ALGEBRAIC STRUCTURES
Subring algebras and ideals
Two-sided ideals and quotient rings
2idlss
Metamath Proof Explorer
Description: A two-sided ideal is a subset of the base set. Formerly part of proof
for 2idlcpbl . (Contributed by Mario Carneiro , 14-Jun-2015)
(Revised by AV , 20-Feb-2025) (Proof shortened by AV , 13-Mar-2025)
Ref
Expression
Hypotheses
2idlss.b
⊢ B = Base W
2idlss.i
⊢ I = 2Ideal ⁡ W
Assertion
2idlss
⊢ U ∈ I → U ⊆ B
Proof
Step
Hyp
Ref
Expression
1
2idlss.b
⊢ B = Base W
2
2idlss.i
⊢ I = 2Ideal ⁡ W
3
2
eleq2i
⊢ U ∈ I ↔ U ∈ 2Ideal ⁡ W
4
3
biimpi
⊢ U ∈ I → U ∈ 2Ideal ⁡ W
5
4
2idllidld
⊢ U ∈ I → U ∈ LIdeal ⁡ W
6
eqid
⊢ LIdeal ⁡ W = LIdeal ⁡ W
7
1 6
lidlss
⊢ U ∈ LIdeal ⁡ W → U ⊆ B
8
5 7
syl
⊢ U ∈ I → U ⊆ B