This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Law for subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | negidd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| pncand.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
| subaddd.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | ||
| addsub4d.4 | ⊢ ( 𝜑 → 𝐷 ∈ ℂ ) | ||
| Assertion | 2addsubd | ⊢ ( 𝜑 → ( ( ( 𝐴 + 𝐵 ) + 𝐶 ) − 𝐷 ) = ( ( ( 𝐴 + 𝐶 ) − 𝐷 ) + 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | pncand.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
| 3 | subaddd.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
| 4 | addsub4d.4 | ⊢ ( 𝜑 → 𝐷 ∈ ℂ ) | |
| 5 | 2addsub | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( ( 𝐴 + 𝐵 ) + 𝐶 ) − 𝐷 ) = ( ( ( 𝐴 + 𝐶 ) − 𝐷 ) + 𝐵 ) ) | |
| 6 | 1 2 3 4 5 | syl22anc | ⊢ ( 𝜑 → ( ( ( 𝐴 + 𝐵 ) + 𝐶 ) − 𝐷 ) = ( ( ( 𝐴 + 𝐶 ) − 𝐷 ) + 𝐵 ) ) |