This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a graph with two vertices and an edge connecting these two vertices, to go from one vertex to the other vertex via this edge is a trail. The two vertices need not be distinct (in the case of a loop). (Contributed by Alexander van der Vekens, 3-Dec-2017) (Revised by AV, 22-Jan-2021) (Revised by AV, 23-Mar-2021) (Proof shortened by AV, 30-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 1wlkd.p | |- P = <" X Y "> |
|
| 1wlkd.f | |- F = <" J "> |
||
| 1wlkd.x | |- ( ph -> X e. V ) |
||
| 1wlkd.y | |- ( ph -> Y e. V ) |
||
| 1wlkd.l | |- ( ( ph /\ X = Y ) -> ( I ` J ) = { X } ) |
||
| 1wlkd.j | |- ( ( ph /\ X =/= Y ) -> { X , Y } C_ ( I ` J ) ) |
||
| 1wlkd.v | |- V = ( Vtx ` G ) |
||
| 1wlkd.i | |- I = ( iEdg ` G ) |
||
| Assertion | 1trld | |- ( ph -> F ( Trails ` G ) P ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1wlkd.p | |- P = <" X Y "> |
|
| 2 | 1wlkd.f | |- F = <" J "> |
|
| 3 | 1wlkd.x | |- ( ph -> X e. V ) |
|
| 4 | 1wlkd.y | |- ( ph -> Y e. V ) |
|
| 5 | 1wlkd.l | |- ( ( ph /\ X = Y ) -> ( I ` J ) = { X } ) |
|
| 6 | 1wlkd.j | |- ( ( ph /\ X =/= Y ) -> { X , Y } C_ ( I ` J ) ) |
|
| 7 | 1wlkd.v | |- V = ( Vtx ` G ) |
|
| 8 | 1wlkd.i | |- I = ( iEdg ` G ) |
|
| 9 | 1 2 3 4 5 6 7 8 | 1wlkd | |- ( ph -> F ( Walks ` G ) P ) |
| 10 | funcnvs1 | |- Fun `' <" J "> |
|
| 11 | 2 | cnveqi | |- `' F = `' <" J "> |
| 12 | 11 | funeqi | |- ( Fun `' F <-> Fun `' <" J "> ) |
| 13 | 10 12 | mpbir | |- Fun `' F |
| 14 | istrl | |- ( F ( Trails ` G ) P <-> ( F ( Walks ` G ) P /\ Fun `' F ) ) |
|
| 15 | 9 13 14 | sylanblrc | |- ( ph -> F ( Trails ` G ) P ) |