This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The equivalence class of ratio 1. (Contributed by NM, 4-Mar-1996) (Revised by Mario Carneiro, 28-Apr-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 1nqenq | ⊢ ( 𝐴 ∈ N → 1Q ~Q 〈 𝐴 , 𝐴 〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enqer | ⊢ ~Q Er ( N × N ) | |
| 2 | 1 | a1i | ⊢ ( 𝐴 ∈ N → ~Q Er ( N × N ) ) |
| 3 | mulidpi | ⊢ ( 𝐴 ∈ N → ( 𝐴 ·N 1o ) = 𝐴 ) | |
| 4 | 3 3 | opeq12d | ⊢ ( 𝐴 ∈ N → 〈 ( 𝐴 ·N 1o ) , ( 𝐴 ·N 1o ) 〉 = 〈 𝐴 , 𝐴 〉 ) |
| 5 | 1pi | ⊢ 1o ∈ N | |
| 6 | mulcanenq | ⊢ ( ( 𝐴 ∈ N ∧ 1o ∈ N ∧ 1o ∈ N ) → 〈 ( 𝐴 ·N 1o ) , ( 𝐴 ·N 1o ) 〉 ~Q 〈 1o , 1o 〉 ) | |
| 7 | 5 5 6 | mp3an23 | ⊢ ( 𝐴 ∈ N → 〈 ( 𝐴 ·N 1o ) , ( 𝐴 ·N 1o ) 〉 ~Q 〈 1o , 1o 〉 ) |
| 8 | df-1nq | ⊢ 1Q = 〈 1o , 1o 〉 | |
| 9 | 7 8 | breqtrrdi | ⊢ ( 𝐴 ∈ N → 〈 ( 𝐴 ·N 1o ) , ( 𝐴 ·N 1o ) 〉 ~Q 1Q ) |
| 10 | 4 9 | eqbrtrrd | ⊢ ( 𝐴 ∈ N → 〈 𝐴 , 𝐴 〉 ~Q 1Q ) |
| 11 | 2 10 | ersym | ⊢ ( 𝐴 ∈ N → 1Q ~Q 〈 𝐴 , 𝐴 〉 ) |